Вилли Лей - Ракеты и полеты в космос

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Ракеты и полеты в космос"
Описание и краткое содержание "Ракеты и полеты в космос" читать бесплатно онлайн.
Книга известного американского популяризатора ракетного дела и космических исследований Вилли Лея преследует цель показать в доступной форме развитие ракетной техники и идеи полета человека в космос, к другим небесным телам, с момента зарождения этой идеи и до наших дней.
Книга рассчитана на широкий круг читателей, интересующихся вопросами ракетостроения и космонавтики.
Рис. 83. Бомбардировщик-«антипод» Зенгера.
Принимая скорость истечения равной 3000 м/сек, можно довести скорость крылатой ракеты до 6000 м/сек и поднять ее на максимальную высоту 260 км. Все это хорошо иллюстрируется приводимыми ниже расчетными данными и рис. 84.
Рис. 84. Диаграмма траектории полета бомбардировщика-«антипода» Зенгера.
После пятого снижения могло быть еще четыре «волны» с вершинами на высоте 60 км и нижними точками на высоте 40 км. При этом расстояние по горизонту между нижними точками составляло бы около 1000 км и имело тенденцию к сокращению. Девятая нижняя точка лежала бы тогда в 16800 км от точки старта. Затем самолет в течение некоторого времени мог оставаться на высоте 40 км, а в 23 000 км от точки старта терял бы высоту и, пролетев еще 500 км, то есть в общем половину расстояния вокруг Земли, совершал бы посадку. Посадочная скорость должна была составить всего 140 км/час, что давало возможность любому аэропорту принять такой самолет-ракету. Однако самолет-ракета Зенгера мог нести только 300 кг полезной нагрузки, не считая пилота.
Проект Зенгера рассчитан для ракетных двигателей со скоростью истечения порядка 3000 м/сек, которая еше и сейчас не является стандартной. Доктор Зенгер занимался проблемой полетов и на более короткие расстояния. Основная трудность такого полета состояла в развороте самолета-ракеты на обратный курс. Оказалось, что развернуть самолет, идущий со скоростью почти 1600 м/сек, чрезвычайно трудно: многие приборы и агрегаты могут отказать из-за чрезмерных перегрузок, и, кроме того, для выполнения такого маневра необходимо огромное количество топлива. Гораздо легче было бы осуществить прямой полет с посадкой на базе, расположенной на «противоположном конце» Земли. В этом случае самолеты-ракеты стартовали бы с какой-нибудь базы в Германии, скажем из Берлина, сбрасывали бы свои бомбы в заданном районе или пункте и приземлялись бы в точке-антиподе. Обратный полет также можно было бы использовать для бомбардировки той же или другой цели.
Схема таких полетов была рассчитана довольно точно, хотя и имела некоторые недостатки. Так, точка-антипод для любой точки старта в Германии оказывалась в районе Австралии и Новой Зеландии, то есть на территории, контролируемой западными союзниками. Кроме того, города-цели не всегда оказывались там, где этого требовал «план полета». Далее, любая бомбардировка должна была производиться с нижней точки траектории, но даже и тогда рассеивание при бомбометании оставалось бы исключительно большим. Единственным городом в Западном полушарии, который при полете из Германии по схеме Зенгера находился бы под нижней точкой траектории, являлся Нью-Йорк. При этом бомбардировщик направлялся бы в Японию или в ту часть Тихого океана, которая тогда находилась в руках японцев.
Задумывался Зенгер и над еще одной возможностью. Зачем останавливаться в точке-антиподе? Почему не облететь вокруг Земли и не вернуться снова на ту базу, с которой был осуществлен старт? Расчеты показывали, что для этого потребуется скорость истечения порядка 4000 м/сек, которая обеспечит максимальную скорость ракеты 7000 м/сек с первым пиком на высоте 280 км и на удалении 3500 км от точки старта и первым снижением до 40 км на расстоянии 6750 км от точки старта. В этом случае девятое снижение лежало бы на расстоянии 27 500 км от стартовой позиции. Посадка в точке старта могла быть сделана через 13 060 секунд, то есть через 3 часа 40 минут после старта.
Доклад Зенгера заканчивался рекомендацией принятия схемы с одной базой, как наиболее практичной, и перечислением исследовательских проектов, которые нужно было выполнить для ее осуществления. Легко понять, почему никто из высокопоставленных немцев, прочитавших этот доклад, ничего не предпринял; было уже слишком поздно, чтобы реализовать подобный проект. Кроме того, все понимали, что даже если бы у немцев и имелись такие бомбардировщики, то бомбовая нагрузка в 300 кг бомбардировщика-антипода или 3800 кг — бомбардировщика, совершающего полет вокруг Земли, не имела бы большого военного значения.
Это была, безусловно, интересная идея, но трудно предположить, что кто-либо решится на ее осуществление. Вряд ли можно применить этот способ увеличения дальности для мирных целей, а для военных в настоящее время имеются более эффективные ракеты дальнего действия.
Авиация и ракетные исследования сомкнулись также и в области обеспечения взлета самолетов с земли, с воды, а позднее — с палуб авианосцев.
Мысль о применении реактивных ускорителей для взлета самолетов возникла вскоре после первой мировой войны. Сначала они были использованы на поплавковых гидросамолетах, а затем авиационные инженеры начали думать о более широком применении реактивного принципа ускорения старта. Идея заключалась в том, чтобы расходовать мощность основного двигателя только в полете, а взлет обеспечивать с помощью ракет.
Впервые одномоторный поплавковый гидросамолет фирмы «Юнкерс» был испытан на взлете с батареей пороховых ракет летом 1929 года.
Первые сведения о практическом применении стартовых реактивных ускорителей поступили из Голландии во время «битвы за Англию». Сообщалось, что немцы запускали перегруженные бомбардировщики с небольших полевых аэродромов, используя ускорители. Это были оригинальные металлические решетки, помещаемые в нижней части фюзеляжа самолета и содержащие большое количество пороховых ракет, которые воспламенялись электрическим запалом. Когда самолет поднимался в воздух, пустые решетки сбрасывались.
Эти импровизированные ускорители, вероятно, составлялись из ракет Шмиддинга. Но еще раньше, в 1938 году, хорошо зарекомендовали себя стартовые ускорители Вальтера, работавшие на перекиси водорода. Взлеты самолета He-112 с ускорителями Вальтера были даже засняты на кинопленку. Имевшие почти круглую форму стартовые ускорители обычно подвешивались к крыльям самолета рядом с двигателями. Они должны были сбрасываться сразу же по использовании, чтобы не создавать дополнительного лобового сопротивления. Все первые стартовые ускорители были «холодного» типа, но с увеличением веса самолетов стали применяться и «горячие».
В дальнейшем производство жидкостных стартовых ракетных ускорителей велось заводом Вальтера в Киле и фирмой BMW. Ниже (стр. 367) приведены характеристики двух образцов, выпущенных в конце войны и считающихся типичными для того времени.
Стартовый ускоритель HWK RI-209 был сконструирован для двух самолетов—He-111 и Ju-88. Двигатель BMW 109-718 предназначался специально для турбореактивного истребителя Ме-262; здесь турбина реактивного двигателя приводила в движение и топливные насосы стартового ускорителя. Это значительно снижало вес всей системы.
Немецкие методы производства перекиси водорода высокой концентрации сравнительно давно стали известны и в Японии. Электрохимический завод Питча продал все секреты технологии фирме «Мицубиси Сэйси Кайся». Но японские военно-морские силы не проявляли вплоть до июня 1944 года никакого интереса к ракетам на перекиси водорода. Да и вообще японцев ракеты особенно не привлекали. Ведшиеся в то время исследовательские работы были направлены главным образом на создание двигательной ракетной установки для проектировавшегося самолета «Сюсуй» и двигателя для человекоторпеды «Кайтен».
В этот период японцы имели три типа пороховых стартовых ускорителей, работавших на двуосновном порохе (см. главу VII). Наименьший из них обладал следующими характеристиками: длина 118 см, внешний диаметр всего 19 см, максимальная тяга 1050 кг, средняя тяга 570 кг, время работы двигателя 4,03 сек. Остальные два ускорителя работали в течение приблизительно 10 сек (один — немного меньше, другой—немного больше). Средняя тяга второго ускорителя составляла 370 кг, максимальная — 876 кг; средняя тяга третьего равнялась 650 кг, а максимальная — 1703 кг. Ускоритель последнего типа применялся на самолете «Бака».
В Америке разработка стартовых ускорителей была начата доктором Карманом из Лаборатории реактивных двигателей. В декабре 1938 года генерал Арнольд попросил Национальную академию наук дать указание Гуггенхеймской авиационной лаборатории Калифорнийского института технологии (GALCIT), в ведении которой находилась лаборатория Кармана, разработать несколько стартовых ускорителей.
Экспериментальные работы начались в 1939 году. Первый опытный образец представлял собой стальную трубу длиной 60 см с толщиной стенки 2.5 см. Один конец ее был закрыт, второй имел фланец, к которому крепилось сопло. Так как тяга стартового ускорителя должна была быть сравнительно низкой, а горение продолжительным, исследователи решили, что заряд должен гореть только с торца. Это означало, что заряд должен был прилегать к стенке. Но в этом случае заряд в результате теплопередачи мог загореться по всей длине, что было небезопасно. Поэтому заряд был помещен в гильзу, которая плохо проводила тепло, а сама гильза — в трубу. В таком виде образец стал очень похож на одну из ракет Зандера.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Ракеты и полеты в космос"
Книги похожие на "Ракеты и полеты в космос" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Вилли Лей - Ракеты и полеты в космос"
Отзывы читателей о книге "Ракеты и полеты в космос", комментарии и мнения людей о произведении.