Вернер Гейзенбер - Шаги за горизонт

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Шаги за горизонт"
Описание и краткое содержание "Шаги за горизонт" читать бесплатно онлайн.
В. Гейзенберг — один из пионеров современной теоретической физики, который закладывал основы атомной физики. С не меньшей смелостью и глубиной ставил и решал он связанные с нею философские, логические и гуманитарные проблемы.
Сборник составлен на основе двух книг В. Гейзенберга: «Шаги за горизонт» (1973) и «Традиция в науке» (1977). В нем дается теоретико-познавательное, гносеологическое осмысление новейших научных достижений, путей развития теоретической физики.
Издание рассчитано как на философов, так и на широкий круг ученых-естествоиспытателей.
Жизнь языка описана здесь очень верно, и если уж в науке нам приходится строить рассуждение, руководствуясь логической структурой языка, то не следует упускать из виду и другие, более богатые его потенции.
Здесь можно спросить: с чем, собственно, связано требование предельной однозначности и точности, предъявляемое к языку естественных наук, и почему другие, более богатые средства языковой выразительности практически не используются в них? Это требование диктуется прежде всего той задачей, которая стоит перед естественными науками, — попытаться отыскать некие упорядоченности в необъятном многообразии явлений окружающего мира, другими словами, понять эти разнородные явления, сведя их к простым принципам. Надо постараться вывести особенное из всеобщего, понять конкретный феномен как следствие простых и общих законов. Формулировка общего закона допускает использование лишь небольшого числа понятий, иначе закон не будет прост и всеобщ. Далее требуется, чтобы из этих понятий можно было вывести бесконечное многообразие возможных явлений, причем не только описать их качественно и приблизительно, но и ответить максимально точно на каждый конкретный вопрос. Очевидно, что понятия естественного языка со свойственной им неточностью и нечеткостью никоим образом не допускают такой возможности. Если из данных предпосылок требуется вывести последовательность заключений, число возможных звеньев в цепи зависит от точности предпосылок. Вот почему основные понятия, используемые в формулировках общих естественнонаучных законов, необходимо определять с наивысшей точностью, но это удается сделать только в строго логической системе, а в конечном счете — с помощью математических абстракций.
Поэтому в теоретической физике мы дополняем и уточняем естественный язык, сопоставляя основополагающие для определенной сферы опыта понятия с математическими символами, которые могут быть соотнесены с фактами, то есть с результатами измерений. С тех пор как 300 лет назад Исаак Ньютон написал свой знаменитый труд «Philosophiae naturalis prinicipia mathematical», подобное дополнение и уточнение естественного языка с помощью математической схемы считалось всегда подлинным основанием точного естествознания. Эту схему можно назвать искусственным математическим языком. Значение основных понятий и сопоставленных им математических символов устанавливается благодаря системе дефиниций и аксиом. Символы связываются математическими уравнениями, которые и можно считать точным выражением так называемых законов природы. Эти уравнения и выражаемые ими законы природы считаются верными, если нам удается вывести из законов природы — в качестве возможных решений системы уравнений — бесчисленное множество конкретных явлений, например если удается с высокой степенью точности вычислить время лунного затмения или траекторию искусственного спутника.
Впоследствии оказалось целесообразным вновь включить элементы этого искусственного математического языка в естественный язык, ввести в него, например, наименования некоторых математических символов, допускающих в какой-то мере наглядное эмпирическое истолкование. В результате такие понятия, как энергия, импульс, энтропия, электрическое поле, стали терминами обыденного языка. Добавлять сверх этого что-либо еще, казалось, не было нужды, и после того, как произошло отмеченное расширение языка, его сочли вполне достаточным для описания и понимания природных процессов.
Только в современной физике произошла здесь, можно сказать, пугающая перемена. С проникновением в области, непосредственно недоступные нашим ощущениям, язык наш порою тоже начинает отказывать. Подобно затупившимся инструментам, понятия нашего языка по отношению к новому ускользающему от них опыту оказываются уже некорректными. Такая возможность отмечалась в принципе уже давно, несколько веков назад. В повседневной жизни каждый понимает смысл слов «наверху» и «внизу». Тела падают вниз, а наверху синее небо. Убедившись, однако, в шарообразности Земли, заметили, что обитатели Новой Зеландии явно перевернуты относительно нас в пространстве, и с нашей точки зрения они как бы висят вниз головой. Можно было, правда, быстро успокоиться, попросту назвав направление к центру Земли направлением «вниз», а от центра — направлением «вверх», и тем самым вроде бы преодолеть трудность. Но в нашу эпоху можно запускать ракеты в космос, и вполне вероятно, что через несколько лет человек на космическом корабле более или менее надолго покинет Землю; для экипажа этого корабля понятия «наверху» и «внизу», как легко понять, вообще утрачивают всякий смысл. И все же довольно трудно представить, как чувствуют себя люди в мире, лишенном определений «верха» и «низа», как они говорят и что думают о нем.
Понятно, стало быть, что проникновение в новые области природы порой влечет за собой изменения в языке. Но в первые десятилетия XX века нам пришлось столкнуться с поразительным обстоятельством. Проникнув с помощью современных технических средств в новые сферы природы, мы узнали, что даже такие простейшие и важнейшие понятия прежней науки, как пространство, время, место, скорость, становятся здесь проблематичными и требуют переосмысления.
Космический корабль снова может послужить примером для разъяснения связанных с понятием времени проблем, с которыми столкнулись в эйнштейновской теории относительности. Допустим, космический корабль с большой скоростью удаляется от Земли и движется в космическом пространстве; допустим далее, что удается достаточно долго поддерживать связь между кораблем и Землей. Пусть на корабле имеются часы, сконструированные точно так же, как соответствующие часы на Земле, и откалиброванные по воспроизводимым физическим процессам. Тогда на основании поступающих с космического корабля сообщений наблюдатель на Земле в состоянии контролировать правильность корабельных часов. Он придет к заключению, что они идут чуть медленнее, чем земные часы. Космонавт же, который по сигналам, поступающим с Земли, тоже может сопоставить ход своих часов с ходом часов на Земле, придет к противоположному заключению: для него медленнее идут часы на Земле. Известные нам законы природы не позволяют сомневаться в том, что результат наблюдений был бы именно таков. Как же тогда вообще разумно сравнивать время на Земле и на корабле? Когда следует называть два события «одновременными», если одно из них происходит на Земле, а другое далеко от Земли, на космическом корабле? Если, например, мы отметим на Земле момент получения сигнала с космического корабля, то момент времени на корабле, который следует назвать «одновременным» с этим событием, наступит, во всяком случае, позже момента, когда был послан сигнал. И этот момент по необходимости наступает раньше момента, когда на корабле принимают сигнал с Земли, посланный сразу же по получении первого. Поначалу нельзя решить, где же в этом интервале находится точка одновременности. Я не могу входить здесь в содержательный разбор проблемы переопределения понятия времени, решенной теорией относительности. Для нашей темы достаточно, впрочем, отметить то обстоятельство, что в новой сфере опыта слово «одновременность» поначалу утратило смысл, подобно тому как на космическом корабле утрачивают смысл понятия «наверху» и «внизу», а это значит, что и здесь оказалось невозможным по-прежнему применять важные устоявшиеся в языке понятия.
При таком положении дел на первый взгляд вообще удивительно, что физики продолжают говорить об экспериментах и умеют их теоретически интерпретировать, так как основополагающие понятия их языка, а стало быть, и мышления перестают работать. К счастью, эти трудности оказываются менее серьезными. Возьмем все тот же пример с космическим кораблем. Физику, поддерживающему на Земле связь с кораблем — то же самое можно сказать и о космонавте, — при описании своих экспериментов нет нужды знать, что означает слово «одновременность» применительно к столь удаленной системе. Ведь для каждого из них эксперименты осуществляются в собственном небольшом пространстве, а для описания подобных процессов вполне достаточно обычного языка, точнее языка классической физики. А потому в пределах небольших пространств связь между математическими символами теоретической физики и опытами устанавливается без затруднений, то есть точно так же, как и в прежней физике. И только благодаря этому удается установить, правильно или неправильно описывает математический формализм теории относительности законы природы. Собственно, именно так и могли быть найдены ее законы. Трудности возникают, лишь когда мы пытаемся, опираясь на знание точных законов природы, сформулированных в теории относительности, говорить о пространственно-временных отношениях в целом. Обычного языка здесь уже недостаточно.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Шаги за горизонт"
Книги похожие на "Шаги за горизонт" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Вернер Гейзенбер - Шаги за горизонт"
Отзывы читателей о книге "Шаги за горизонт", комментарии и мнения людей о произведении.