» » » » Василий Ленский - Книга теорем 2


Авторские права

Василий Ленский - Книга теорем 2

Здесь можно скачать бесплатно "Василий Ленский - Книга теорем 2" в формате fb2, epub, txt, doc, pdf. Жанр: Эзотерика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Книга теорем 2
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Книга теорем 2"

Описание и краткое содержание "Книга теорем 2" читать бесплатно онлайн.








Пока в арифметике безотносительное констатирование факта наблюдений (15 лошадей, три озера, двадцать журавлей), то там нет алгебры. Но уже в арифметике начинается вычитание, то есть тут же числа поляризуются. Алгебра имеет дело не с натуральными, а с поляризованными объектами и числами. Натуральные числа тут безынтересные.

Великая ли Великая теорема Ферма?

Великая теорема Ферма (также Последняя Теорема Ферма) утверждает что «для любого целого числа n > 2 уравнение не имеет положительных целых решений a, b, c».

Это, наверное, самая знаменитая теорема во всей математике. Теорема была сформулирована Пьером Ферма в 1637 на полях книги «Арифметика» Диофанта с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было здесь поместить. История Великой теоремы Ферма неразрывно связана с историей математики, так как затрагивает все основные темы теории чисел.

И всё же, великая ли Великая теорема?

Когда Пифагор доказывал свою теорему о прямоугольном треугольнике в котором где a, b — катеты, c — гипотенуза, то он брал натуральные числа площади. Другое дело — алгебра. Например, для нахождения катета придётся применить отрицательные числа. Извлечение корня квадратного даст нам два катета «положительный» и «отрицательный». Гипотенуза тоже может быть «положительной» и «отрицательной». Это означает, что в пространстве находятся не один, а два треугольника, то есть треугольник «расщепился». При доказательствах теоремы Ферма каждый математик использовал алгебру поляризованных чисел, а не натуральные числа. Подгонка? Не исключено. Скорее, неосмысленное оперирование. В итоге теорема Пифагора к алгебрам не имеет отношения, так как математики упражнялись не с натуральными величинами площадей, а с поляризованными числами.

Ну, а, если алгебра будет не двухполярной? Тогда мы получим не два треугольника со сторонами + и —, как в двухполярных преобразованиях имели математики 369 лет, а три треугольника.

1. Возьмём трёхполярное пространство, то есть «расщепим» треугольник не на два, как это делают математики, а на три. Тогда, вместо полярностей +, — обозначим три полярности: +,? j. В такой алгебре, а так же (?)*(j) = +.

2. Проведём такие математические преобразования, чтобы охватить несколько разделов математики (дабы не тратить впустую время на каждый раздел).

а) К тригонометрическим функциям: (cos x +sin x)*(cos x +? sin x)*(cos x +j sin x),

b) К показательной функции:.

с) В связи этих функций:

,

,

,

d) Окончательно из a), b), c) получим.

е) Поскольку cos x = b/c, sin x = а/c, где a, b — катеты, с — гипотенуза, то заменим формулу d).

f) В итоге получим:.

3. Аналогично легко доказать для алгебр с нечётным числом полярностей.

Это опровергает «Великую» теорему Ферма.

Иными словами, теорема Ферма остаётся Великой лишь в частном случае алгебры двухполярных отношений. А, так как, полярных пространств очень много, то Великое превращается в малое и частный случай.

Анализ

По сути, алгебра это взаимодействие лок с разными видами связей. Например, +7–7 = 0 это фрагмент плоскостной локи 3. Трёхполярное пространство вошло в алгебру «действительных чисел» как составная часть. В то же время при делении +7: -7 = -1 это фрагмент локи 3 объёмной поляризации.

Однако в алгебре «действительных чисел» используется сочетание: трёхполярное пространство в «сложении» такое, что +а — а = 0, и двухполярное — в «умножении» такое, что а) (+)*(+) = +, б) (+)*(-) = —, в) (-)*(+) = —, г) (-)*(-) = +

Отсюда алгебра таких лок будет, например, (а — в)*(-с) = — аc + вс. Конечно, закон дистрибутивности выведен на базе арифметического опыта и обобщен в алгебре.

Имея не внимательный опыт предшественников, к видам взаимодействия подойдём аккуратно. Например, из а + в = с, совершая перенос через знак равенства, знак числа меняют на обратный, то есть а = в — с. Это правило не правомерно в иных локах.

Внимание! Особо напомню, что всякий раз мы имеем дело с натуральными числами и объектами. Поэтому названия «действительные числа», «комплексные числа» пусть вас не смущают. Так математики назвали двухполярные и четырёхполярные натуральные числа. Никакой «мнимости» в таких числах нет. Есть поляризованность чисел и объектов, относящая к тому или иному пространству, с тем или иным числом полярностей.

Алгебра полярностей

1. Возьмём в пример некоторые полярности? j, k, 0 в плоскостной поляризации и? j, k, 0 в объёмной поляризации. В этих локах, так же как и в трёхполярных, где +1–1 = 0 (здесь полярности +, -, 0)будет 1? + 1j + 1k = 0. Произвольно выберем суперпозиционную локу 4. Здесь (?)*(?) = +, (j)*(j) = +, (k)*(k) = +, (?)*(j)*(k) = +.

2 Проведём алгебраическое преобразование, например (1? + 1j + 1k)*(1? + 1j + 1k) = +3. Иными словами, возведение в степень и проведение алгебраических преобразований привело нас к числу 3. Если по условию 1? + 1j + 1k = 0, то фактически мы провели операцию (0)*(0) = +3, где + — единица в суперпозиционной локе 4.

3. Итак, слепо следовать правилу в умножении 0х0 = 0 тоже не следует.

Прикладные алгебры

Так уж повелось, что не разобравшись с тем, что математика имеет в алгебре «действительных чисел» дело с поляризованным пространством, стали применять двухполярную алгебру и в естественных науках.

Откликнется ли физика, или, например, релятивистская механика, на двухполярность? Сомнительно, что вся Вселенная поляризована только на два вида полярностей.

Взять, к примеру, Теорию Относительности А.Эйнштейна. Там сразу же постулируется с + с = С. Иными словами, скорость света приобретает роль единицы. Но увы, применяются в преобразованиях Лоренца операции алгебры «действительных чисел», то есть алгебры двухполярных отношений. Более того, в преобразованиях извлекается квадратный корень, а это «расщепляет» пространство до четырёх полярностей. Получается по преобразованиям Лоренца, что свет «перетекает» из двухполярное пространство в четырёхполярное.

Единицаимеет место в каждом пространстве с любым числом полярностей. Эйнштейн не определил само пространство. В качестве оговорки замечу, что область света принадлежит анализатору зрения, где выполняются не двухполярные, а, как минимум, трёхполярные законы.

Проведём преобразование «перетекания» из трёхполярного в шестиполярное пространство.

Соответственно, преобразования Лоренца запишем так, что х =?(х + vt), будет поляризоваться не на + и —, а на +,? j, то есть, например, Х = (х +?vt). Так как х = ct, то для полярности, например? будет ct = (ct +?vt). Как и в примере с теоремой Ферма, решая систему уравнений, получим.

После несложных преобразований (см. Основы многополярности), получим коэффициент преобразования пространства и времени.

Окончательно при v = c, то есть при достижении объектом скорости света будет:.

Вновь мы встречаемся с неожиданным результатом. Оказывается, что при приближении скорости движущегося тела к скорости света нет никакого парадокса близнецов. Нет и стремления времени к нулю. Нет бесконечной массы. Так что фантазёры поторопились. Почему? Область существования света — вовсе не двухполярное пространство.

Многоликость света (семиполярного пространства) такова, что он некоторым образом и весьма частично содержит двойственные отношения, но в иной форме, чем предлагает алгебра «действительных чисел» и преобразования Лоренца и Минковского (четырёхмерный континиум). Поэтому некоторым образом свет может «искривляться» в магнитном поле земли.

Конечно, искажения, как и должно быть при переходах из пространство в пространство, есть. Но оно чётко соизмеримое.

Логики

Сколько видов ума, столько и логик.

Интуиция к прорыву

ЛОГИКА (греч. logikh, от logikoz — построенный на рассуждении, от logoz — слово, понятие, рассуждение, разум) — нормативная наука о формах и приемах интеллектуальной познавательной деятельности, осуществляемой с помощью языка.

Логика появилась как интуитивная попытка проявить свойства линейного ума путём применения формализации. Однако законы отношений и сама матрица ума проявлены специалистами по логике не были. Поэтому сложилось мнение, что логика это наука «мышления». В итоге классическая логика и последующие виды логик заложили в базу двухполярный линейный ум.

Логические теории образуют системы классической и неклассической логики. Классическая логика как система знаний сформировалась еще в 4 в. до н. э. в трудах выдающегося древнегреческого мыслителя Аристотеля.

В историческом побуждении чётко проявить законы отношений ума была своя прогрессивность. Причиной можно назвать примеси и вторжение в двухполярный линейный ум иных видов ума. Например, высказывания Иисуса Христа относятся к уму мудрости, который не совместим с линейным умом.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Книга теорем 2"

Книги похожие на "Книга теорем 2" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Василий Ленский

Василий Ленский - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Василий Ленский - Книга теорем 2"

Отзывы читателей о книге "Книга теорем 2", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.