Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия."
Описание и краткое содержание "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия." читать бесплатно онлайн.
Приведены отрывки из работ философов и историков науки XX века, в которых отражены основные проблемы методологии и истории науки. Предназначено для аспирантов, соискателей и магистров, изучающих историю, философию и методологию науки.
Рассмотрим теперь в качестве третьего и заключительного примера кризис в физике конца ХIХ века, который подготовил путь для возникновения теории относительности. Один источник кризиса можно проследить в конце ХVII века, когда ряд натурфилософов, особенно Лейбниц, критиковали Ньютона за сохранение, хотя и в модернизированном варианте, классического понятия абсолютного пространства. Больше того, они высказали догадку, что полностью релятивистское понятие пространства и движения, которое и было открыто позднее, имело бы большую эстетическую привлекательность. Но их критика была чисто логической. Подобно ранним сторонникам Коперника, которые критиковали доказательства Аристотелем неподвижности Земли, они не помышляли о том, что переход к релятивистской системе может иметь осязаемые последствия. Ни в одном пункте они не соотнесли свои точки зрения с теми проблемами, которые возникали в результате применения теории Ньютона к природным явлениям. В результате их точки зрения умерли с ними вместе в течение первых десятилетий ХVIII века и вновь воскресли только в последние десятилетия ХIХ века, когда они приобрели совершенно иное отношение к практике физических исследований.
Технические проблемы, с которыми релятивистская философия пространства в конечном счете должна была быть соотнесена, начали проникать в нормальную науку с принятием волновой теории света примерно после 1815 года, хотя они не вызвали никакого кризиса вплоть до 90-х годов ХIХ века. Если свет является волновым движением, распространяющимся в механическом эфире, и подчиняется законам Ньютона, тогда и наблюдение небесных явлений, и эксперимент в земных условиях дают потенциальные возможности для обнаружения “эфирного ветра”. Из небесных явлений только наблюдения за аберрацией звезд обещали быть достаточно точными для получения надежной информации, и обнаружение “эфирного ветра” с помощью измерения аберраций становится общепризнанной проблемой нормального исследования. Однако подобные измерения, несмотря на большое число специально сконструированных приборов, не обнаружили никакого наблюдаемого “эфирного ветра”, и поэтому проблема перешла от экспериментаторов и наблюдателей к теоретикам. В середине века Френель, Стокс и другие разработали многочисленные варианты теории эфира, предназначенные для объяснения неудачи в наблюдении “эфирного ветра”. Каждый из этих вариантов допускал, что движущееся тело увлекает за собой частички эфира. И каждый из вариантов достаточно успешно объяснял отрицательные результаты не только наблюдения небесных явлений, но также экспериментов на земле, включая знаменитый эксперимент Майкельсона и Морли. Но конфликта все еще не было, исключая конфликты между различными толкованиями. К тому же из-за отсутствия соответствующей экспериментальной техники эти конфликты никогда не были острыми.
Ситуация вновь изменилась только благодаря постепенному принятию электродинамической теории Максвелла в последние два десятилетия ХIХ века. Сам Максвелл был ньютонианцем и верил, что свет и электромагнетизм вообще обусловлены изменчивыми перемещениями частиц механического эфира. Его наиболее ранние варианты теории электричества и магнетизма были направлены на использование гипотетических свойств, которыми он наделял данную среду. Эти свойства были опущены в окончательном варианте его теории, но он все еще верил, что его электромагнитная теория совместима с некоторым вариантом механической точки зрения Ньютона. От него и его последователей требовалось соответствующим образом четко сформулировать эту точку зрения. Однако на практике, как это не раз случалось в развитии науки, ясная формулировка теории встретилась с необычайными трудностями. Точно так же, как астрономический план Коперника, несмотря на оптимизм автора, породил возрастающий кризис существовавших тогда теорий движения, теория Максвелла вопреки своему ньютонианскому происхождению создала соответственно кризис парадигмы, из которой она произошла. Кроме того, пункт, в котором кризис разгорелся с наибольшей силой, был связан как раз с только что рассмотренными проблемами — проблемами движения относительно эфира.
Исследование Максвеллом электромагнитного поведения движущихся тел не затрагивало вопроса о сопротивлении эфирной среды, и ввести это сопротивление в его теорию оказалось чрезвычайно трудно. В результате получилось, что целый ряд ранее осуществленных наблюдений, направленных на то, чтобы обнаружить “эфирный ветер”, указывал на аномалию. Поэтому период после 1890 года был отмечен долгой серией попыток — как экспериментальных, так и теоретических — определить движение относительно эфира и внедрить в теорию Максвелла представление о сопротивлении эфира. Экспериментальные исследования были сплошь безуспешными, хотя некоторые ученые сочли результаты неопределенными. Что же касается теоретических попыток, то они дали ряд многообещающих импульсов, особенно исследования Лоренца и Фицджеральда, но в то же время они вскрыли и другие трудности; в конечном итоге произошло точно такое же умножение теорий, которое, как мы обнаружили ранее, сопутствует кризису. Все это противоречит утверждениям историков, что специальная теория относительности Эйнштейна возникла в 1905 году.
Эти три примера почти полностью типичны. В каждом случае новая теория возникла только после резко выраженных неудач в деятельности по нормальному решению проблем. Более того, за исключением примера со становлением гелиоцентрической теории Коперника, где внешние по отношению к науке факторы играли особенно большую роль, указанные неудачи и умножение теорий, которые являются симптомом близкого крушения прежней парадигмы, длились не более чем десяток или два десятка лет до формулировки новой теории. Новая теория предстает как непосредственная реакция на кризис. Заметим также, хотя это, может быть, и не столь типично, что проблемы, по отношению к которым отмечается начало кризиса, бывают все именно такого типа, который давно уже был осознан. Предшествующая практика нормальной науки дала все основания считать их решенными или почти решенными. И это помогает объяснить, почему чувство неудачи, когда оно наступает, бывает столь острым. Неудача с новым видом проблем часто разочаровывает, но никогда не удивляет. Ни проблемы, ни головоломки не решаются, как правило, с первой попытки. Наконец, всем этим примерам свойствен еще один признак, который подчеркивает важную роль кризисов: разрешение кризиса в каждом из них было, по крайней мере частично, предвосхищено в течение периода, когда в соответствующей науке не было никакого кризиса, но при отсутствии кризиса эти предвосхищения игнорировались.
Единственное полное предвосхищение, которое в то же время и наиболее известно, — предвосхищение Коперника Аристархом в III веке до н. э. Часто говорят, что если бы греческая наука была менее дедуктивной и меньше придерживалась догм, то гелиоцентрическая астрономия могла начать свое развитие на восемнадцать веков раньше, чем это произошло на самом деле. Но говорить так — значит игнорировать весь исторический контекст данного события. Когда было высказано предположение Аристарха, значительно более приемлемая геоцентрическая система удовлетворяла всем нуждам, для которых могла бы предположительно понадобиться гелиоцентрическая система. В целом развитие птолемеевской астрономии, и ее триумф и ее падение, происходит после выдвижения Аристархом своей идеи. Кроме того, не было очевидных оснований для принятия идеи Аристарха всерьез. Даже более тщательно разработанный проект Коперника не был ни более простым, ни более точным, нежели система Птолемея. Достоверные проверки с помощью наблюдения, как мы увидим более ясно далее, не обеспечивали никакой основы для выбора между ними. При этих обстоятельствах одним из факторов, который привел астрономов к коперниканской теории (и который не мог в свое время привести их к идее Аристарха), явился осознаваемый кризис, которым в первую очередь было обусловлено создание новой теории. Астрономия Птолемея не решила своих проблем, и настало время предоставить шанс конкурирующей теории. Два других наших примера не обнаруживают столь же полных предвосхищений, однако несомненно, что одна из причин, в силу которых теории горения, объясняемого поглощением кислорода из атмосферы (развитые в ХVII веке Реем, Гуком и Майовом), не получили достаточного распространения, состояла в том, что они не устанавливали никакой связи с проблемами нормальной научной практики, представляющими трудности. И то, что ученые ХVIII — ХIХ веков долго пренебрегали критикой Ньютона со стороны релятивистски настроенных авторов, в значительной степени связано с подобной неспособностью к сопоставлению различных точек зрения.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия."
Книги похожие на "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия."
Отзывы читателей о книге "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.", комментарии и мнения людей о произведении.