» » » » Лидия Александровская - Сертификация сложных технических систем


Авторские права

Лидия Александровская - Сертификация сложных технических систем

Здесь можно скачать бесплатно "Лидия Александровская - Сертификация сложных технических систем" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство Литагент «Логос»439b7c39-76ee-102c-8f2e-edc40df1930e, год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Лидия Александровская - Сертификация сложных технических систем
Рейтинг:
Название:
Сертификация сложных технических систем
Издательство:
Литагент «Логос»439b7c39-76ee-102c-8f2e-edc40df1930e
Год:
2001
ISBN:
5-94010-035-х
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Сертификация сложных технических систем"

Описание и краткое содержание "Сертификация сложных технических систем" читать бесплатно онлайн.



Освещаются основные понятия и процедуры сертификации, мировая и отечественная практика ее проведения. Видное место отведено специальным системам сертификации, прежде всего сертификации сложных технических систем. Рассматривается взаимосвязь сертификации именеджмента. Показано место систем обеспечения качества продукции в управлении организациями. Даются важнейшие нормативные и методические документы по стандартизации, сертификации и аккредитации. Для студентов высших учебных заведений, обучающихся по направлению `Метрология, стандартизация, сертификация` и специальности `Стандартизация и сертификация`. Представляет интерес для специалистов в области управления качеством продукции и сертификации.






«Сырьевая» и «технологическая» однородность партии продукции при анализе, например, механических свойств (твердость, прочность и т. п.) позволяет комплектовать выборку методом направленного отбора «слабейших» изделий партии. Различают три способа представления продукции для контроля: «ряд», «россыпь», «в упаковке».

При способе «ряд» продукция, поступающая для контроля, упорядочена. Ее единицы могут иметь сплошную нумерацию, например 0, 1, 2, … Изделия, отмеченные любым номером, можно легко отыскать и извлечь. Количество единиц продукции, поступающей на контроль, ограничено. При способе «россыпь» единицы продукции, поступающие на контроль, неупорядочены, их невозможно нумеровать и нельзя отыскать и извлечь какую-то определенную единицу; количество единиц, поступающих на контроль, велико. При способе «в упаковке» единицы продукции, поступающие для контроля, не могут быть упорядочены и пронумерованы, так как находятся в контейнерах, ящиках, коробках одного и того же объема. Упаковочные единицы имеют те же особенности, что и продукция, поступающая по способу «ряд».

Случайный отбор с применением случайных чисел используют при проверке продукции, поступающей на контроль по способу «ряд». Для этого N единиц продукции, входящих в партию, нумеруют порядковыми числами от 0 до N – 1. Число N – 1 определяет необходимое число знаков н случайных чисел. Величина н выбирается из условия 10ν ≥ N – 1. Существующие таблицы случайных чисел содержат k-значные десятичные числа. При ν < k берутся только n знаков каждого числа (слева, справа или посередине), а остальные знаки отбрасывают. Из таблицы случайных чисел выбирают n чисел (n – объем выборки). Порядок их выбора может быть произвольным, при этом числа, большие N – 1, а также повторяющиеся, опускают.

Выборка составляется из единиц продукции, порядковые номера которых соответствуют n отобранным случайным числам.

Многоступенчатый отбор предполагает извлечение из партии сначала укрупненных групп единиц, затем групп, меньших по объему, и так до тех пор, пока не будут отобраны отдельные единицы продукции, которые должны подвергнуться испытаниям. Частным случаем многоступенчатого отбора является двухступенчатый отбор, при котором партия разбивается на группы и производится сначала отбор групп, а затем внутри групп – отбор единиц продукции. На обеих ступенях отбор производится случайным образом. Число ступеней отбора не должно быть большим из-за организационных сложностей формирования выборки. Многоступенчатый отбор отличается от расслоенного тем, что при первом способе отбирают не все группы изделий, а при втором – отбор производится из всех без исключения групп. Многоступенчатый отбор применяют для испытаний продукции в упаковке. Из отобранных упаковочных единиц на первой ступени извлекают отдельные изделия методами случайного отбора (при выборочном контроле) или все изделия (при сплошном контроле), и на основе полученных данных выносят суждение о качестве продукции.

Отбор «вслепую» применяют для продукции, поступающей на контроль по способу «россыпь», а также в том случае, когда применение метода отбора с использованием случайных чисел затруднено или экономически нецелесообразно. Единицы продукции должны отбираться независимо, из разных частей партий. Метод не применяют, когда бракованные изделия можно определить органолептически. Он обеспечивает независимость попадания изделий в выборку, но не гарантирует равную вероятность попадания в выборку единиц продукции.

Систематический (механический) отбор применяют для продукции, если задан определенный порядок следования единиц продукции. Изделия отбирают через фиксированный интервал времени или через определенное число изделий (каждое 10-е, каждое 20-е и т. д.). При этом в следующих одна за другой единицах продукции период изменения контролируемого параметра не должен быть равен периоду отбора изделий. Этот способ обеспечивает равную вероятность попадания каждой единицы продукции в выборку при случайном начале отсчета периода, но не обеспечивает независимость попадания единицы продукции в выборку (в отличие от отбора «вслепую»).

Основные подходы для определения объема выборки. Существуют три подхода определения объема выборки: статистико-вероятно-стный, экономический и комбинированный. При статистико-вероятностном подходе основой процедур вычисления объема n выборки являются соотношения, связывающие объем n выборки с точностью и достоверностью получаемых оценок показателей, или применяется прием «обращения» относительно величины n в статистических критериях проверки гипотез. Экономический подход основан на расчете потерь, обусловленных расходами на проведение испытаний (с учетом разрушения испытываемых изделий) и последствий от принятия того или иного решения по результатам испытаний при некотором объеме n выборки. Комбинированный подход базируется на совместном использовании ста-тистико-вероятностного и экономического подходов.

Рассмотрим наиболее распространенный статистико-вероят-ностный подход определения объема выборки. Исходными данными для вычисления объема выборки являются предельная абсолютная Дч или относительная дч ошибки в оценке среднего значения показателя и предельная абсолютная ошибка Dp в оценке доли признака; степень достоверности оценки, выраженная доверительной вероятностью q.

В табл. 5.6 приведены формулы для расчета объема выборки при случайном и систематическом отборе единиц продукции для оценки среднего значения показателя качества и доли единиц продукции, обладающих определенным признаком (например доля дефектных единиц).

Таблица 5.6


Примечания: 1. Принятые обозначения: 2– ожидаемое значение дисперсии измеряемой величины; V – коэффициент вариации; p – ожидаемое значение доли единиц продукции, обладающих данным признаком; tq (n 1) – квантиль распределения Стьюдента для доверительной вероятности q и числа степеней свободы n– 1.

2. При расчете n значение округляется до ближайшего целого числа.

В табл. 5.6 учтено, что измеряемая величина имеет нормальное распределение. При больших n (n ≥ 30) для упрощения расчетов целесообразно вместо значения tq (n—1) использовать квантиль нормального распределения uq.

Для больших партий расчет объема выборки без повторения можно проводить по более простым формулам для выборки с повторением.

При случайном многоступенчатом (двухступенчатом) отборе объем выборки определяют:


где V12, V1 – соответственно межгрупповые дисперсия и коэффициент вариации измеряемой величины; r – число первичных упаковочных единиц, подлежащих отбору, которое зависит от количества первичных упаковочных единиц в партии R:

r………..Все 5 1/20 часть (5 %) 20

R………. 1–5 6 – 99 10 – 399 400 и более.

Предельные объемы выборки при многоступенчатом отборе:


где m – число изделий в упаковочной единице.

Объем выборки при типическом (расслоенном) отборе рассчитывают по следующим формулам:

выборка без повторения выборка с повторением


где V—2 – среднее частных дисперсий по слоям.

Объем выборок из i-го слоя вычисляется по следующим формулам:

выборка, пропорциональная объему слоев



выборка с учетом изменения измеряемой величины в слоях


где Ni – объем слоя; k – число слоев в партии; Vi2 – ожидаемое значение дисперсии измеряемой величины в i-м слое; Vi – ожидаемое значение коэффициента вариации в i-м слое.

Ниже приведены типовые примеры расчета объема выборки с учетом рассмотренных способов их формирования.

Пример 1. Партия проката (N = 100 листов) представлена на испытания для контроля средней толщины листа с относительной погрешностью δ = 0,1 при доверительной вероятности q = 0,9. Необходимо определить объем выборки, если известно, что коэффициент вариации толщины листа равен 0,2.

Способ представления продукции на испытания – «ряд», поэтому для формирования выборки целесообразно использовать случайный отбор. Так как выборка без повторения, то для расчета объема n выборки необходимо воспользоваться формулой из табл. 5.6, заменив значение tq (n 1) на uq:


Таким образом, для обоих типов выборок их объем примерно одинаков.

Пример 2. Партия стержней (N = 20 000 шт.), упакованная в 100 ящиков (упаковочных единиц), представлена на испытания для контроля предела усталости. Необходимо определить объем выборки для испытаний, если δ = 0,1; V = 0,3; Vi = 0,05; q = 0,95.

Определим количество ящиков, подлежащих отбору из партии. Для 100 ≥ R ≤ 399 количество отобранных упаковочных единиц r = 100/20 = 5.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Сертификация сложных технических систем"

Книги похожие на "Сертификация сложных технических систем" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Лидия Александровская

Лидия Александровская - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Лидия Александровская - Сертификация сложных технических систем"

Отзывы читателей о книге "Сертификация сложных технических систем", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.