Карл Поппер - Объективное знание. Эволюционный подход

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Объективное знание. Эволюционный подход"
Описание и краткое содержание "Объективное знание. Эволюционный подход" читать бесплатно онлайн.
Книга выдающегося философа и логика XX века Карла Раймунда Поп-пера «Объективное знание» вышла первым изданием в 1972, вторым — исправленным и дополненным, с которого сделан русский перевод, в 1979 г.
В ряду сочинений Поппера она занимает особое место: это — третья, после «Логики научного исследования» (1934, 1959) и «Предположений и опровержений» (1963), его классическая работа по философии, теории познания и логике науки. В ней подводятся итоги предшествующих исследований Поп-пером проблем индукции, фальсификационизма, критического рационализма, правдоподобности научных теорий и др., а также излагаются полученные к моменту ее написания результаты его разработок теории трех миров, роли понятия «истина» в философии науки, проблем эволюционной эпистемологии и т.д. Последние проблемы были в центре внимания Поппера до конца его жизни.
В русском переводе этой книги публикуется «Послесловие к русскому изданию Объективного знания», написанное одним из учеников, соавторов и ближайших друзей Карла Поппера Дэвидом Миллером.
ct(L) = 0
ct(AT) = 1 - p(А.T, L) = 1 - р(А.Т)
ct(AF) = 1- p(A,AT),
что соответствует ранее полученным результатам.
Это наводит на мысль, что мы можем ввести понятие правдоподобности, или verisimilitude, высказывания а таким образом, чтобы оно возрастало вместе с возрастанием истинностного содержания этого высказывания и убывало с ростом его ложностного содержания. Это можно сделать несколькими способами [312].
Самый очевидный способ — принять ct(At) - ct(AF) за меру правдоподобности A. Однако по причинам, которые я здесь не буду обсуждать, мне кажется несколько более предпочтительным определить правдоподобность vs(A) как разность, умноженную на некий нормализующий множитель, предпочтительно следующий:
Таким путем мы получаем следующее
Определение:
что, конечно, можно переписать в р-нотации как:
А это приводит к
-1 ⩽ vs(A) ⩽ +1
и, в частности, к
vs(L) = 0.
Иначе говоря, правдоподобность измеряет не ту степень приближения к истине, которой можно достичь, не делая никаких содержательных высказываний (она измеряется нехваткой содержания или вероятностью), а приближение ко «всей истине» — через все большее и большее истинностное содержание. Я полагаю, что правдоподобность в этом смысле является более адекватной целью науки — особенно естественных наук, чем истина, по двум причинам. Во-первых, потому, что мы не думаем, что L составляет цель науки, даже хотя L=LT. Во-вторых, потому, что мы можем предпочесть теории, которые считаем ложными, другим, даже истинным — таким как L, — если сочтем, что их истинности содержание существенно превышает их ложностное содержание.
В этих заключительных разделах главы 9 я лишь кратко очертил программу сочетания теории истины Тарского с его исчислением систем с целью получить понятие правдоподобности, позволяющее нам говорить — без опасения говорить бессмыслицу — о теориях, являющие лучшими или худшими приближениями к истине. Я, конечно, не предполагаю, что может существовать критерий применимости этого понятия не более, чем может существовать такой критерий для понятия истины. Вместе с тем некоторым из нас (например, Эйнштейну) иногда хочет говорить такие вещи, как например что у нас есть основания предполагать, что эйнштейновская теория тяготения не истинна, но являет лучшим приближением к истине, чем ньютоновская. Иметь возможное со спокойной совестью говорить подобные вещи кажется мне важным пожеланием к методологии естественных наук.
Добавление
Замечание к определению истины по Тарскому{56}
В своей знаменитой работе о понятии истины[313] Тарский описывает способ определения понятия истины или, точнее, понятия «x есть истинное высказывание (языка L)».Первоначально этот способ применялся к исчислению классов, но он может применяться в самом общем виде к самым разным (формализованным) языкам, включая языки, позволяющие формализовать некоторые эмпирические теории. Для этого способа характерно то, что определение «истинного высказывания» основывается на определении отношения удовлетворения (relation of satisfaction), или точнее — выражения «бесконечная последовательность f удовлетворяет пропозициональной функции Х»[314]. Это отношение удовлетворения интересно само по себе, вне зависимости от того, что оно играет решающую роль в определении истины (и что шаг от определения удовлетворения к определению истины практически не представляет трудности). Предлагаемые мною замечания связаны с проблемой применения при определении удовлетворения конечных, а не бесконечных последовательностей. Это, по-моему, желательно с точки зрения применения данной теории к эмпирическим наукам, а также и с дидактической точки зрения.
Сам Тарский кратко обсуждает два способа [315] связанные с применением конечных последовательностей переменной длины вместо бесконечных последовательностей, но он указывает и на некоторые недостатки этих альтернативных способов. Первый из них ведет к «значительным [или „довольно серьезным"] осложнениям» (ziemlich bedeutenden Komplikationen) при определении удовлетворения (Определение 22), в то время как недостаток второго состоит в «некоторой искусственности» (eine gewisse Kunstlichkeit), поскольку он приводит к определению истины (Определение 23 [р. 195 англ. перевода]) с помощью понятия «пустой последовательности», или «последовательности нулевой длины»[316]. В своих замечаниях я хочу обратить внимание на то, что сравнительно небольшое изменение процедуры Тарского позволяет нам оперировать с конечными последовательностями, не сталкиваясь с осложнениями или искусственностями (например, пустыми последовательностями), которые имел в виду Тарский. Этот способ позволяет нам сохранить весьма естественную процедуру, предусмотренную условием (6)Определения 22 Тарского (р. 193 англ. перевода), и таким образом избежать обходного пути, связанного с введением отношений — или свойств, — имеющих порядок, равный числу свободных переменных рассматриваемой пропозициональной функции. Предлагаемое мною изменение способа Тарского достаточно незначительно, но ввиду того, что Тарский ссылается на другие его варианты, имеющие значительные недостатки, а не на данный вариант, может быть, стоит описать и это небольшое улучшение[317].
Для этой цели полезно будет неформально упомянуть, во-первых понятие номера места n (place number n) (или n-го места) в конечной последовательности объектов, а во-вторых, понятия длины конечной последовательности f, то есть число мест в f (символически Np(f))равное самому большому номеру места в ней, и сравнения конечны последовательностей по их длине. Упомянем, в-третьих, что объект может занимать в последовательности определенное место — скажем, n-е, -и тогда его можно назвать [n-м индивидом или] n-м объектом, или n-м членом рассматриваемой последовательности. Следует отметить, что один и тот же объект может занимать разные места в одной последовательности так же как и в разных последовательностях[318].
Как и Тарский, я использую символы "f1", "f2", ... , "fi", "fk"» ... "fn" в качестве имен объектов, занимающих первое, второе, i-е, k-e, ... n-е места в последовательности f. Я пользуюсь обозначениями Тарского за тем исключением, что [по типографским соображениям] использув "Pky" для обозначения обобщения [или квантификации по общности выражения y по переменной vk[319]. Принимается, что к Определению (11)[320] Тарского добавлено Определение выражения «vk входит в пропозициональную функцию x» — это предположение ни в коей мере не выводит нас за пределы методов Тарского и фактически в неявном виде присутствует в процедурах самого Тарского.
Теперь мы можем заменить Определение 22 Тарского [р. 193]. Мы заменим его двумя определениями — предварительным Определением 22a и Определением 22b, которое соответствует собственному определению Тарского.
Определение 22а. Конечная последовательность объектов f адекватна пропозициональной функции x(или достаточно длинна относительно x), если и только если
для каждого натурального числа n,
если vn входит в x, то число мест в f по крайней мере равно n (то есть Np(f) ⩾ n).
Определение 22b [321].
Последовательность f удовлетворяет пропозициональной функции x, если и только если
f — конечная последовательность объектов,
x — пропозициональная функция, и
(1) f адекватна x,
(2) x соблюдает одно из следующих четырех условий:
(α) Существуют натуральные числа i и k такие, что x= li,k и fi ⊂ fk.
(β) Существует пропозициональная функция y такая, что x = y, и f не удовлетворяет y.
(γ) Существуют две пропозициональные функции у и z такие, что x = y + z и f удовлетворяет либо y, либо z, либо обеим.
(δ) Существует натуральное число k и пропозициональная функция y такая, что
(a) x = Pky,
(b) любая конечная последовательность g, длина которой равна f, удовлетворяет y, если только g соблюдает следующее условие: для любого натурального числа n, если n — номер места в f и n≠k, то gn = fn.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Объективное знание. Эволюционный подход"
Книги похожие на "Объективное знание. Эволюционный подход" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Карл Поппер - Объективное знание. Эволюционный подход"
Отзывы читателей о книге "Объективное знание. Эволюционный подход", комментарии и мнения людей о произведении.