Авторские права

О. ОРЕ - Приглашение в теорию чисел

Здесь можно скачать бесплатно "О. ОРЕ - Приглашение в теорию чисел" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство "Наука" Главная редакция физико-математической литературы, год 1980. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
О. ОРЕ - Приглашение в теорию чисел
Рейтинг:
Название:
Приглашение в теорию чисел
Автор:
Издательство:
"Наука" Главная редакция физико-математической литературы
Год:
1980
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Приглашение в теорию чисел"

Описание и краткое содержание "Приглашение в теорию чисел" читать бесплатно онлайн.



Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.






Осталось определить, какие целые положительные числа m и n в действительности соответствуют простейшим треугольникам. Докажем, что следующие три условия на числа m и n являются необходимыми и достаточными:

(1) (m, n) = 1,

(2) m > n, (5.2.8)

(3) одно из чисел m и n четное, а другое — нечетное.

Доказательство. Сначала покажем, что если числа х, у, z образуют простейшую тройку, то условия (5.2.8) выполняются. Мы уже показали, что условие (1) является следствием того, что числа х, у, z взаимно простые. Условие (2) следует из того, что числа х, у, z — положительны. Чтобы увидеть, что условие (3) необходимо, заметим, что если m и n оба нечетные, то в соответствии с (5.2.7) у и z были бы оба четные, в противоречие с результатами, полученными в конце предыдущего параграфа.

Наоборот, если условия (5.2.8) выполнены, то соотношения (5.2.7) определяют простейшую тройку: условие (2) обеспечивает положительность чисел х, у и z.

Могут ли какие-нибудь два из этих трех чисел иметь общий простой множитель р? Такое простое число р, делящее два из них, должно также делить и третье в силу соотношения х2 + у2 = z2. Если число р делит х, то оно в соответствии с (5.2.7) должно делить 2mn. Число р не может равняться 2, потому что у и z нечетные в соответствии с условием (3) и (5.2.7). Предположим, что р ≠ 2 — нечетное простое число, делящее m. Тогда условие (1) и выражение (5.2.7) показывают, что р не может делить у и z. Такие же рассуждения применимы и для случая, если р делит число n.

Найдя необходимые и достаточные условия (5.2.8) для того, чтобы m и n давали простейший треугольник, можно вычислить все такие треугольники с помощью соотношения (5.2.7). Например, пусть

m = 11, n = 8.

Наши условия выполнены, и мы находим, что

х = 176, у = 57, z = 185.

В табл. 3 приведены все простейшие треугольники х, у, z для нескольких первых значений чисел т и n.

Таблица 3


Система задач 5.2.

1. Продлите таблицу для всех значений m ≤ 10.

2. Могут ли два разных набора значений чисел m и п, удовлетворяющих условию (5.2.8), дать один и тот же треугольник?

3. Найдите все пифагоровы треугольники, у которых длина гипотенузы не превосходит 100.

§ 3. Несколько задач о треугольниках Пифагора

Мы решили задачу нахождения всех треугольников Пифагора. Здесь, как почти всегда в математике, решение одной задачи приводит к постановке ряда других задач. Часто новые вопросы оказываются значительно более трудными, чем первоначальный.

Одним из естественных вопросов о простейших треугольниках является следующий. Пусть задана одна из сторон простейшего треугольника Пифагора, как найти остальные? Первым рассмотрим случай, когда известна сторона у. В соответствии с (5.2.7)

y = m2 — n2 = (m + n)(m — п), (5.3.1)

где m и n—числа, удовлетворяющие условиям (5.2.8).

В уравнении (5.3.1) множители (m + n) и (m — n) взаимно простые. Чтобы в этом убедиться, заметим, что эти множители

а = m + n, b = m — n (5.3.2)

оба нечетные, так как одно из чисел m и n нечетное, а другое четное. Если числа а и b имеют общий нечетный простой множитель р, то число р должно было бы делить каждое из чисел

аb = mn + (m — n) = 2m

и

а — b = m + n — (m — n) = 2n,

т. е. р должно было бы делить числа m и n. Но это невозможно, так как D(m, n) = 1.

Предположим теперь, что есть разложение данного нечетного числа у на два множителя

y = a  b, a > b, D(a, b) = 1. (5.3.3)

Из (5.3.2) получаем

m = 1/2 (a + b), n = 1/2 (a — b). (5.3.4)

Эти два числа также взаимно простые, поскольку любой их общий множитель должен был бы делить числа а = m + n и bm — n. Кроме того, числа m и n не могут быть оба нечетными, ибо тогда каждое из чисел а и b делилось бы на 2. Отсюда заключаем, что числа m и n удовлетворяют условиям (5.2.8) и, таким образом, определяют простейший треугольник, одна из сторон которого у = m2 — n2.

Пример. Пусть y = 15. Для него существуют два разложения на множители, удовлетворяющие условиям (5.3.3), а именно:

у = 15 • 1 = 5 • 3.

Первое из них дает

m = 8, n = 7, x = 112, у = 15, z = 113,

а второе

m = 4, n = 1, x = 8, y = 15, z = 17.

Пусть, далее, задана сторона х. Так как какое-то из чисел m или n делится на 2, то очевидно, что х = 2mn должно делиться на 4. Если разложить число х/2 на два взаимно простых множителя, то больший из них можно взять в качестве числа m, а меньший — n.


Пример. Возьмем х = 24; тогда

1/2 x = 12 • 1 = 4 • 3.

Первое разложение дает

m = 12, n = 4, х = 24, y = 143, z = 145,

а второе

т = 4, n = 3, х = 24, у = 7, z = 25.

Третий и последний случай приводит нас к необходимости коснуться одной важной задачи теории чисел. Если z — гипотенуза простейшего треугольника Пифагора, то в соответствии с (5.2.7) имеем

z = m2 + n2. (5.3.5)

т. е. число z есть сумма квадратов чисел m и n, удовлетворяющих условиям (5.2.8).

Это приводит нас к постановке вопроса, уже решенного П. Ферма: когда целое число можно представить в виде суммы квадратов двух целых чисел:

z = a2 + b2? (5.3.6)

На время забудем все ограничения на числа а и b. Пусть они могут иметь общие множители, а также каждое из них, или даже сразу оба могут обращаться в нуль. Перечислим все целые числа, меньшие десяти, представляемые в виде суммы двух квадратов:

0 = 02 + 02, 1 = 12 + 02, 2 = 12 + 12, 4 = 22 + 02, 5 = 22 + 12, 8 = 22 + 22, 9 = 32 + 02, 10 = 32+12.

Оставшиеся числа 3, 6 и 7 не представляются в виде суммы двух квадратов.

Опишем, как можно выяснить, является ли число суммой двух квадратов. К сожалению, мы не можем привести здесь доказательства ввиду его сложности.

Рассмотрим вначале простые числа. Каждое простое число вида р = 4n + 1 всегда является суммой двух квадратов; например,

5 = 22 + 12, 13 = 32 + 22, 17 = 42+12, 29 = 52 + 22.

Существенно, что такое представление может осуществляться единственным способом.

Остальные нечетные простые числа имеют вид q = 4n + 3, т. е.

q = 3, 7, 11, 19, 23, 31…

Ни одно такое простое число не представляется в виде суммы двух квадратов; более того, вообще ни одно число вида 4n + 3 не может быть представлено в виде суммы двух квадратов. Чтобы убедиться в этом, заметим, что если целые числа а и b оба четные, то а2 и b2 оба делятся на 4, отсюда и а2 + b2 делится на 4. Если они оба нечетные, например, а = 2k + 1, b = 2l + 1, то а2 + b2 = 4k2 + 4k + 1 + 4l2 + 4l + 1 = 4 (k2 + l2 + k + l) + 2, поэтому а2 + b2 имеет при делении на 4 остаток 2. И наконец, если одно из целых чисел а и b четное, а другое — нечетное, скажем, а = 2k + 1, b = 2l, то а2 + b2 = 4k2 + 4k + 1 + 4l2 и имеет при делении на 4 остаток 1. Итак, мы перебрали все возможности и можем заключить, что сумма двух квадратов никогда не представима в виде 4n + 3.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Приглашение в теорию чисел"

Книги похожие на "Приглашение в теорию чисел" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора О. ОРЕ

О. ОРЕ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "О. ОРЕ - Приглашение в теорию чисел"

Отзывы читателей о книге "Приглашение в теорию чисел", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.