Мартин Гарднер - Математические головоломки и развлечения

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Математические головоломки и развлечения"
Описание и краткое содержание "Математические головоломки и развлечения" читать бесплатно онлайн.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Делитель должен быть больше 123, так как произведение 80 809 на 123 выражается семизначным числом, а наше делимое восьмизначно. Единственное натуральное число, заключенное между 123 и 125, равно 124. Теперь уже мы в состоянии восстановить всю запись деления:
6. Разделить пирог между n персонами так, чтобы каждой из них досталось по крайней мере 1/n пирога, можно несколькими способами. Предлагаемый нами способ обладает тем преимуществом, что после раздела не остается лишних кусков пирога.
Предположим, что имеется пять желающих получить по куску пирога: А, В, С, D и Е. А отрезает кусок, который, по его мнению, составляет 1/5 пирога, и намеревается оставить его себе. Если В считает, что А отрезал слишком большой кусок, то он (В) имеет право уменьшить этот кусок до размеров, которые он считает соответствующими 1/5 пирога. Разумеется, если В считает, что отрезанный А кусок меньше 1/5, то он к нему вообще не прикасается. Аналогичными правами пользуются по очереди С, D и Е. Кусок достается тому из пятерых, кто дотрагивается до него последним. Всякий, кто считает, что получившему кусок пирога досталось меньше 1/5, естественно, доволен: ведь, по его мнению, осталось больше 4/5 пирога.
Оставшаяся часть пирога (сюда входят и кусочки, отрезанные при доведении уже отрезанного куска до «кондиции») делится затем точно таким же образом между четырьмя, тремя и т. д. любителями пирога. При последнем разделе один из участников режет пирог, а другой выбирает. Ясно, что этот метод применим при любом числе заинтересованных лиц.
Подробный разбор этого и других решений задачи содержится в книге Р. Д. Льюиса и Г. Райффа «Игры и решения» (ИЛ, 1960).
7. Вот как нужно складывать первую карту. Перевернем ее лицевой стороной вниз, в результате чего номера на квадратах расположатся в такой последовательности:
Затем, перегнув карту пополам, сложим ее так, чтобы правая половина карты накрыла ее левую половину, то есть квадрат 5 оказался
наложенным на квадрат 2, квадрат 6 — на квадрат 3, квадрат 4 — на квадрат 1 и квадрат 7 — на квадрат 8. Сложенную вдвое карту перегнем еще раз пополам так, чтобы ее нижняя половина накрыла верхнюю половину. При этом квадрат 4 накроет квадрат 5, а квадрат 7 — квадрат 6. Внутреннюю часть карты сложим еще раз пополам так, чтобы квадраты 4 и 5 оказались между квадратами 6 и 3, а затем подогнем край карты (квадраты 1 и 2) под образовавшийся пакетик. Первая карта свернута по всем правилам!
Вторую карту сначала нужно сложить пополам (номерами квадратов наружу), перегнув ее по горизонтали так, чтобы сверху оказались квадраты с номерами 4, 5, 3 и 6. Затем следует отогнуть левый край двойной полосы так, чтобы квадрат 4 накрыл собой квадрат 5. Правый конец полоски (квадраты 6 и 7) после этого нужно ввести внутрь сложенной вдвое карты между квадратами 1 и 4 и протащить за то ребро квадрата 4, по которому уже был произведен сгиб, так чтобы квадраты 6 и 7 оказались между квадратами 8 и 5, а квадраты 3 и 2 — между квадратами 1 и 4.
8. Пусть x — число долларов, а у — число центов в той сумме, на которую мистер Браун выписал чек. Условие задачи можно записать в виде уравнения
100y + x — 5 = 2(100x + y),
или, что то же самое,
99y — 199x = 5
Это диофантово уравнение, имеющее бесконечно много решений в целых числах. Обычный метод решения с помощью непрерывных дробей дает наименьший ответ в положительных целых числах х = 31, у = 63. Следовательно, мистер Браун выписал чек на сумму 31 доллар 63 цента. Это единственный ответ задачи, поскольку ближайшее к найденному решение х = 129, у = 262 не удовлетворяет требованию: у должен быть меньше 100.[51]
Однако существует гораздо более простой подход к решению.
Пусть, как и прежде, х означает число долларов, а у — число центов. После покупки газеты у Брауна осталось денег 2х + 2у. При этом из х центов, выплаченных ему кассиром, у него осталось х-5 центов.
Мы знаем, что у меньше 100, но мы не можем сказать с уверенностью, будет ли у меньше 50 центов. Если это так, то мы вправе записать уравнения
2x = y
2y = x-5
Если у равен 50 или большему количеству центов, то после покупки газеты у Брауна останется 2у центов, что больше или равно числу оставшихся у него долларов. Поэтому в написанные нами уравнения в этом случае необходимо внести некоторые изменения:
из 2у вычесть 100 и прибавить 1 к 2х. Уравнения примут вид
2x+1 = y
2y-100 = x-5
Каждая из систем уравнений легко решается. Первая система приводит к отрицательному значению х, что исключается. Вторая дает правильный ответ.
9. Независимо от того, сколько вина в одном сосуде и сколько воды в другом, а также от того, сколько жидкости переносится из сосуда в сосуд за один раз (за исключением единственного случая, когда в одном из сосудов вообще нет жидкости), достичь равенства процентного содержания вина в обеих смесях невозможно. Это нетрудно доказать с помощью простого рассуждения по индукции.
Если в сосуде А содержится вино более высокой концентрации, чем в сосуде В, то и после того, как мы отольем часть жидкости из А в В, в А останется вино более высокой концентрации. Точно так же, переливая вино из В в А, то есть из сосуда с вином низкой концентрации в сосуд с вином более высокой концентрации, мы заведомо оставляем в В вино более низкой по сравнению с А концентрации.
Так как при каждом переливании могут представляться только эти два случая, то в сосуде А всегда будет смесь с более высоким процентным содержанием вина, чем в В. Единственный способ уравнивания концентраций заключается в том, чтобы полностью перелить содержимое одного из сосудов в другой.
Только что приведенное решение исходит из неверного допущения: оно предполагает, что жидкости бесконечно делимы, в то время как они состоят из дискретных молекул. На это указал мне в своем письме один из читателей.
Сэр!
Ваше решение задачи о смешивании вина и воды явно игнорирует физическую природу рассматриваемых объектов. Когда из смеси двух жидкостей берут пробу, то относительное количество одной из жидкостей в пробе будет отличаться от относительного количества той оке жидкости в смеси. Отклонение от «правильного» относительного количества будет порядка
, где n — число молекул интересующей нас жидкости.
Следовательно, уравнять концентрации вина в двух сосудах можно. Вероятность выравнивания концентраций становится заметно отличной от нуля после того, как неравенство концентраций понижается до величины порядка у/п. Для этого необходимо произвести лишь 47 двойных переливаний, о которых говорится в условии задачи…
Глава 30. ИНДУКТИВНАЯ ИГРА ЭЛУЗИС
В большинстве математических игр, начиная с игры в крестики и нолики и кончая шахматами, от играющего требуется умение мыслить индуктивно. Совсем иные требования предъявляет элузис — замечательная карточная игра, изобретенная Робертом Эбботом.
Этот писатель из Нью-Йорка известен как создатель многих карточных и настольных игр, но элузис вызывает не только у математиков, но и у других ученых особый интерес. Дело в том, что игра элузис во многом напоминает исследование законов природы и позволяет тем, кто в нее играет, развивать интуицию, способность угадывать скрытые закономерности, то есть именно те качества, которыми и объясняются «внезапные озарения» и «наития», переживаемые творчески мыслящими личностями.
В элузис можно играть, когда соберется не меньше трех игроков. Для игры берут обычную[52] колоду игральных карт. Играющие сдают карты по очереди. Тот, кто должен сдавать карты, выполнив свою функцию, в дальнейшей игре активного участия не принимает и выступает лишь в роли наблюдателя или арбитра. Последнюю карту кладут посреди стола вверх картинкой. Это первая карта так называемого «исходного», или «начального», ряда. Для того чтобы никто из игроков не оказался обделенным и не получил меньше карт, чем другие, сдающий должен заранее подготовить колоду, изъяв из нее в случае необходимости лишние карты. Если играющих трое (имеются в виду все играющие, в том числе и тот, кто сдавал карты, хотя он не оставляет себе ни одной карты), то из колоды нужно заранее вынуть одну карту; при четырех играющих лишних карт нет; при пяти нужно вынуть три карты и т. д. Изъятые из колоды карты сдающий откладывает в сторону, не показывая их играющим.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Математические головоломки и развлечения"
Книги похожие на "Математические головоломки и развлечения" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Мартин Гарднер - Математические головоломки и развлечения"
Отзывы читателей о книге "Математические головоломки и развлечения", комментарии и мнения людей о произведении.