» » » » Эвальд Ильенков - Об идолах и идеалах


Авторские права

Эвальд Ильенков - Об идолах и идеалах

Здесь можно скачать бесплатно "Эвальд Ильенков - Об идолах и идеалах" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Политиздат, год 1968. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Об идолах и идеалах
Издательство:
Политиздат
Жанр:
Год:
1968
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Об идолах и идеалах"

Описание и краткое содержание "Об идолах и идеалах" читать бесплатно онлайн.



Введите сюда краткую аннотацию






Индивидуальное усвоение знаний здесь стремятся организовать так, чтобы оно в сжато-сокращенной форме воспроизводило действительный процесс их рождения и развития. Ребенок с самого начала становится не потребителем готовых результатов, запечатленных в абстрактных дефинициях, аксиомах и постулатах, а, так сказать, «соучастником» творческого процесса.

Не нужно, конечно, думать, что каждый ребенок здесь вынужден самостоятельно изобретать все те формулы, которые сотни, а может быть и тысячи лет назад уже изобрели для него люди ушедших[202] поколений. Но повторить логику пройденного пути он должен. Тогда сами формулы усваиваются им не как магические абстрактные рецепты, а как реальные, совершенно конкретные общие принципы решения реальных же, конкретных задач.

В частности, на основе специальных исследований психологи убедились, что описанная нами выше методика преподавания счета дает детям не понятие числа, а лишь два абстрактных, притом противоречащих одно другому, представления о числе. Два частных случая числового выражения реальных вещей – вместо действительно общего принципа.

И тогда пришли к выводу, что сначала нужно объяснить детям действительно общую природу числа, а уже потом показывать два частных случая его применения.

Но само собой ясно, что ребенку не сообщишь «понятия» числа, очищенное от каких бы то ни было следов «наглядности», от связи с каким-нибудь одним частным случаем. Поэтому надо искать и найти такой частный (а потому чувственно-предметный) случай, где число и необходимость действий с числом выступали бы перед ребенком в общем виде. Нужно искать такое частное, которое выражало бы прежде всего именно общую природу числа, а не подсовывало бы опять лишь и только частное ее проявление.

Пытаясь решить эту задачу – отчасти психологическую, отчасти логическую и математическую, психологи поняли, что неправильно вообще начинать обучение детей математике с числа, то есть с операции счета, сосчитывания, безразлично – единичных вещей или их составных частей[9].[203] Есть все основания полагать, что действия с числами, составляющие традиционную арифметику, – далеко не самые простые, а арифметика вовсе не составляет самого «первого этажа» математического мышления. Скорее таким этажом оказываются некоторые понятия, обычно относимые к алгебре.

Опять парадокс. Ведь по традиции считается издавна, что алгебра – вещь более сложная, чем арифметика, посильная лишь шестикласснику и в «истории математики» оформившаяся позже. Анализ, однако, показывает, что и в истории знания алгебра необходимо должна была возникнуть не позже арифметики. Конечно, речь идет о действительной истории математического развития людей, а не об истории математических трактатов, которая отражала подлинную историю лишь «задним числом», а потому – вверх ногами.

Как показывают исследования, простейшие количественные соотношения, которые описывает алгебра, и в истории были осознаны раньше, чем человек вообще изобрел число и счет. В самом деле, раньше, чем люди изобрели число, счет, сложение, вычитание, деление и умножение чисел, они по необходимости должны были пользоваться такими словами, как «больше», «меньше», «дальше», «ближе», «потом», «раньше», «равно», «неравно» и т.п. Именно в них нашли свое выражение общие количественные (пространственно-временные) соотношения между вещами, явлениями, событиями.

Но в специально математических трактатах самая ранняя стадия математического развития мышления, естественно, зафиксирована не была. И если реальная история развития математического мышления[204] началась раньше, чем появились первые теоретические трактаты по математике, то и логическая последовательность преподавания математики (=развития математической способности) должна начинать с действительного «начала». С правильной ориентировки человека в количественном плане реальной действительности, а не с числа, которое представляет собою лишь позднюю (а потому и более сложную) форму выражения количества, лишь частный случай количества.

Поэтому надо начинать с действий, выделяющих для человека этот количественный план рассмотрения окружающего мира, чтобы потом прийти к числу как к развитой форме выражения количества, как к более позднему и сложному умственному отвлечению.

Принцип совпадения логического с историческим – великий принцип диалектической логики. Но его проведение предполагает одну опять-таки диалектически-коварную деталь. А именно: логическое должно соответствовать действительной истории предмета, а не истории теоретических представлений о его развитии.

Анализируя историю политической экономии, Карл Маркс отметил важнейшее (с точки зрения диалектики) обстоятельство: «...Историческое развитие всех наук приводит к их действительным исходным пунктам лишь через множество перекрещивающихся и окольных путей. В отличие от других архитекторов, наука не только рисует воздушные замки, но и возводит отдельные жилые этажи здания, прежде чем заложить его фундамент». Да, действительный логический фундамент, на котором держатся верхние[205] этажи, наука «открывает» в своем предмете лишь задним числом.

И фундамент всегда предполагался верхними этажами, но не был ясно понят, показан и проанализирован. Он предполагался в смутном, неотчетливо сформулированном виде, часто в качестве «мистических» представлений. Так случилось, например, и с дифференциальным исчислением. Ньютон и Лейбниц это исчисление «открыли», научили людей им пользоваться, но сами не могли понять, почему, на каких реальных основаниях держится вся его сложная конструкция, какие более «простые» понятия и действия она реально предполагает. Последнее было установлено лишь позже – Лагранжем, Эйлером и другими теоретиками.

Число и счет в действительности предполагали и предполагают в качестве своих реальных предпосылок ряд представлений, до понимания коих математика (как и все науки) докопалась лишь задним числом. Здесь идет речь как раз об общих предпосылках и того и другого. О тех понятиях, которые должны быть развиты (и усвоены) раньше, чем число и счет. Потому, что они имеют более общий характер, и потому логически более просты.

Если же говорить о тех математических знаках, с помощью которых фиксируются наиболее общие и простые понятия, то они вовсе не цифры, а скорее те знаки, которые давно использует алгебра: буквы, знаки равенства, неравенства, «больше», «меньше». И все они обозначают отношения величин (неважно каких, в частности), выраженных числом или не выраженных, пространственно-геометрических или временных. Отношения величин вообще. Само собой понятно, что представление о величине и в истории мышления появилось у людей раньше, чем[206] умение точно измерять величины тем или иным способом и выражать их числом. А уж затем, когда обнаружилось, что умения просто сравнивать величины недостаточно, чтобы действовать в мире на их основе, возник вопрос, а на сколько именно больше (меньше). И только здесь, собственно, возникла и потребность в числе и счете, и сами число и счет.

По той причине, что без них, более конкретных (сложных, развитых) понятий о количестве, уже нельзя было бы решить сложных и конкретных предметно-практических задач, связанных с отражением количественной определенности окружающего мира.

Человек изобрел число вовсе не путем абстрагирования от всех и всяких качеств, не благодаря тому, что научился «не обращать внимание» на разницу камня и мяса, палки и огня. Как раз наоборот, в числе и счете он нашел средство более глубокого и конкретного выражения именно качественной (самой важной и первой) определенности. Число «понадобилось» человеку там и только там, где жизнь поставила его перед необходимостью сказать другому человеку (или самому себе) – не просто больше (меньше), а насколько больше (меньше).

Число предполагает меру, как более сложную, чем качество и количество, категорию, которая позволяет отражать количественную сторону выделенного качества точнее (конкретнее), чем прежде. И точно фиксировать более конкретное представление с помощью цифр, а не просто словечек «больше», «меньше», «равно», «неравно». От общего диффузно-нерасчлененного представления о количестве человек шел к более совершенному, точному, то есть конкретному представлению о том же количестве, – к числу. И пришел.

И поэтому число для него имело с самого начала[207] вполне конкретный, то есть предметно-практический, смысл и значение; было действительным понятием числа, хотя еще и не проанализированным теоретически ни одним профессионалом-математиком. Это случилось гораздо позже, тогда, когда началось уже не только математическое мышление, а и его теоретическое самосознание. Вначале превратно-мистическое, как у пифагорейцев. А до подлинного теоретического понимания числа математика добралась лишь тысячелетия спустя.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Об идолах и идеалах"

Книги похожие на "Об идолах и идеалах" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Эвальд Ильенков

Эвальд Ильенков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Эвальд Ильенков - Об идолах и идеалах"

Отзывы читателей о книге "Об идолах и идеалах", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.