» » » » Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE


Авторские права

Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE

Здесь можно скачать бесплатно "Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE" в формате fb2, epub, txt, doc, pdf. Жанр: Программы, издательство ДМК Пресс, год 2008. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE
Рейтинг:
Название:
Визуальное моделирование электронных схем в PSPICE
Издательство:
ДМК Пресс
Жанр:
Год:
2008
ISBN:
978-5-94074-436-8
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Визуальное моделирование электронных схем в PSPICE"

Описание и краткое содержание "Визуальное моделирование электронных схем в PSPICE" читать бесплатно онлайн.



PSPICE определяет промышленный стандарт программ-имитаторов и является самым популярным пакетом моделирования для OS/Windows как у профессионалов, так и у любителей по всему миру. Эта книга — лучшее на сегодняшний день учебное пособие по PSPICE. Курс построен по принципу «от простого к сложному». Первая часть посвящена основам работы с программой. В ней говорится о том, как строить и редактировать чертежи электронных схем, находить нужную информацию в выходном файле, моделировать цепи постоянного и переменного тока, строить диаграммы любой сложности, исследовать частотные характеристики схем. Во второй части подробно рассказывается о различных видах анализов, выполняемых с помощью PSPICE (анализ переходных процессов, параметрический анализ и т.д.). Также в ней содержится руководство по цифровому моделированию и использованию программы-осциллографа PROBE. Третья и четвертая части включают сведения об использовании PSPICE для расчета электрических цепей и цепей регулирования. Описывается, как создать и модифицировать модели компонентов схем.

Книга адресована пользователям различного уровня подготовки: в первую очередь инженерам и конструкторам, профессиональным разработчикам промышленных изделий (электронных схем, технологического оборудования, автомобилей и т.д.), студентам радиотехнических специальностей, а также радиолюбителям.

Прилагаемый к книге компакт-диск содержит рабочие версии программы PSPICE, подробный справочник по PSPICE (на английском языке), библиотеки компонентов, необходимые для работы с книгой, и учебные упражнения.






Теперь все резисторы типа Rbreak, установленные в вашей схеме, имеют необходимую температурную характеристику. Если вы соберетесь чертить новую схему и захотите установить в ней резистор типа Rbreak, то он снова не будет иметь никакого температурного коэффициента, то есть, чтобы сделать его зависимым от температуры, вам потребуется опять повторить всю вышеуказанную процедуру.

Урок 8

Параметрический анализ

В этом уроке речь идет о правилах проведения параметрического анализа. Вы научитесь выводить на экран PROBE диаграммы семейств кривых не только для анализа цепи постоянного тока, но и для анализа переходных процессов.

Параметрический анализ (Parametric Sweep) расширит круг ваших возможностей по изображению семейств кривых. Вы уже научились, проводя анализ цепи постоянного тока, использовать наряду с основной переменной еще одну, дополнительную, и таким образом создавать семейства кривых. С помощью параметрического анализа вы сможете выводить на экран PROBE диаграммы семейств кривых не только для анализа цепи постоянного тока (DC Sweep), но и для анализа цепи переменного тока (AC Sweep), и для анализа переходных процессов (Transient Analysis). Навыки, приобретенные вами в проведении анализа DC Sweep одновременно с вложенным анализом Nested Sweep, помогут вам без особых трудностей овладеть и параметрическим анализом. Принципы проведения сдвоенного анализа DC Sweep и параметрического анализа практически одинаковы.

Параметрический анализ, как и вложенный, всегда используется в качестве дополнения к основному анализу (Main Sweep). То есть фактически это то же самое, с чем вы уже познакомились при изучении анализа DC Sweep. Термин «параметрический» взят из математики, где изменяемые переменные семейств кривых называются параметрами.

8.1. Параметрический анализ как дополнительный к анализу DC Sweep

У того, кто хорошо разбирается в анализе DC Sweep, возникает естественный вопрос, каково различие между сдвоенным анализом DC Sweep, знакомым вам по уроку 7, и анализом DC Sweep в сочетании с параметрическим, который является предметом рассмотрения в данном разделе. Отвечаем: разница между двумя этими анализами минимальная. Чтобы оценить, насколько минимально это различие, вы сейчас с помощью анализа DC Sweep + Parametric Sweep опишете характеристики схемы термоизмерительного мостика (см. рис. 7.18), для которой уже выполняли сдвоенный анализ DC Sweep (см. раздел 7.4 и рис. 7.23). И вы увидите, что диаграммы PROBE, полученные в результате двух этих анализов, не отличаются друг от друга.

Шаг 1 Откройте схему термоизмерительного мостика TERMOBRIDG.sch, которую вы поместили в папку Projects (рис. 8.1).

Рис. 8.1. Схема термоизмерительного мостика


Шаг 2 Выполните такую же предварительную установку, которую вы использовали в разделе 7.4 для глобальной переменной, то есть задайте, что в качестве основной изменяемой переменной будет служить температура (от -50 °С до 150 °С с интервалами в 0.1 °С) — см. рис. 8.2.

Рис. 8.2. Окно DC Sweep с установками для изменения температуры


Шаг 3 Щелкните в окне DC Sweep по кнопке Nested Sweep…. Откроется окно DC Nested Sweep. Снимите флажок рядом с опцией Enable Nested Sweep, чтобы деактивизировать вложенный анализ Nested Sweep, так как при одновременном использовании вложенный и параметрический анализы конфликтуют друг с другом. 

Шаг 4 Возвращайтесь к окну DC Sweep, щелкнув по кнопке Main Sweep…. Подтвердите предварительную установку для основной переменной с помощью кнопки OK. Окно DC Sweep закроется, и вы вернетесь опять к окну Analysis Setup (рис. 8.3).

Рис. 8.3. Окно Analysis Setup с выставленными флажками


Шаг 5 Убедитесь, что в окне Analysis Setup рядом с кнопкой DC Sweep… установлен флажок.

Шаг 6 А теперь установите флажок еще и рядом с кнопкой Parametric… (Параметрический анализ) — см. рис. 8.3.

Шаг 7 Щелкните по кнопке Parametric…. Откроется одноименное окно (рис. 8.4).

Рис. 8.4. Окно Parametric


Как видите, окно Parametric трудно отличить от окон DC Sweep (см. рис. 8.2) и DC Nested Sweep (см. рис. 7.22).

Шаг 8 Выполните в окне Parametric все необходимые настройки, руководствуясь образцом на рис. 8.4, то есть используйте такую же предварительную установку, которую вы в свое время проводили в окне DC Nested Sweep. Подтвердите свой выбор с помощью кнопки OK и запустите процесс моделирования.

После того как программа завершит свои расчеты, за ходом которых вы можете наблюдать в окне PSPICE, на экране откроется окно Available Sections (Доступные секции). Здесь находится список кривых для всех значений вашего параметра (в данном случае, температурного коэффициента) — см. рис. 8.5.

Рис. 8.5. Окно Available Sections


Вы можете выбрать те кривые, которые программе PROBE следует отобразить на диаграмме, щелкая по ним мышью (они будут выделены синим цветом). Если вы оставляете это окно в том же виде, в каком оно было открыто, то тогда все кривые окажутся выделенными и, значит, выбранными для изображения в PROBE. Возможность выбирать отдельные кривые как раз и составляет единственное отличие между анализами DC Sweep + Parametric Sweep и DC Sweep + Nested Sweep. При подключении вложенного анализа DC Nested Sweep вы не можете отбирать отдельные кривые для отображения в PROBE.

Шаг 9 Выберите в окне Available Sections все кривые для отображения и щелкните по кнопке OK. Откроется пока еще пустое окно PROBE.

Откройте список диаграмм (команда Trace Add) и выведите на экран диаграмму напряжения в ветви моста (рис. 8.6), где будет показано семейство кривых для различных значений температурного коэффициента TC1.

Рис. 8.6. Диаграмма температурной зависимости напряжения в мостовой ветви термоизмерительного мостика


Эта диаграмма уже знакома вам по рис. 7.23. С помощью параметрического анализа вы получили тот же результат, что и при использовании вложенного анализа DC Nested Sweep.

8.1.1. Упражнение по проведению параметрического анализа

Шаг 10 Воспроизведите диаграмму, изображенную на рис. 7.31, с помощью параметрического анализа.

8.2. Сопротивление в качестве параметра

При изучении урока 5 вам пришлось изрядно потрудиться, чтобы, «вручную» изменяя значение R в RC-фильтре нижних частот, получить диаграмму, изображенную на рис. 5.18. С помощью параметрического анализа вы сможете сделать это гораздо быстрее и проще.

Вы снова будете создавать диаграмму семейства кривых для схемы RC-фильтра нижних частот. Однако полученная с помощью анализа AC Sweep + Parametric Sweep диаграмма будет намного лучше описывать зависимость частотной характеристики от значения сопротивления R, чем диаграмма, которую вы видели на рис. 5.18.

Шаг 11 Загрузите на экран SCHEMATICS схему RC-фильтра нижних частот, которую вы спроектировали при изучении урока 5 и сохранили в папке Projects под именем RC_AC.sch (рис. 8.7). Здесь R=100 Ом и С=2 мкФ, а в качестве источника напряжения использован источник типа VSIN.

Рис. 8.7. RC-фильтр нижних частот


Шаг 12 Установите, если это не было сделано ранее, источник напряжения на АС=1 V и вызовите индикацию данного атрибута на свой чертеж. Помните о том, что атрибуты, необходимые для анализа переходных процессов (FREQ, VOFF, VAMPL, TD, TF, PHASE), также нельзя оставлять без конкретных значений, хотя они и абсолютно не нужны для анализа AC Sweep.

Шаг 13 Зарегистрируйте сопротивление R как параметр с именем R_pass и внесите, таким образом, в свой чертеж изменения, показанные на рис. 8.8.

Рис. 8.8. Схема RC-фильтра нижних частот, где значение сопротивления зарегистрировано как параметр


Шаг 14 Сохраните измененную схему в папке Projects под именем RC_AC_P1.

Шаг 15 Проведите предварительную установку для основного анализа AC Sweep, в ходе которого будет исследована частотная характеристика фильтра нижних частот с переменным напряжением АС=1 В в диапазоне от f=10 Гц до f=1 МГц с логарифмическим распределением контрольных точек по 100 точек на каждую декаду (рис. 8.9).

Рис. 8.9. Установки для основной переменной


Закройте окно AC Sweep and Noise Analysis, щелкнув по кнопке OK, и активизируйте в окне Analysis Setup, в дополнение к анализу AC Sweep, параметрический анализ, установив флажок рядом с кнопкой Parametric… (рис. 8.10).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Визуальное моделирование электронных схем в PSPICE"

Книги похожие на "Визуальное моделирование электронных схем в PSPICE" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Роберт Хайнеманн

Роберт Хайнеманн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Роберт Хайнеманн - Визуальное моделирование электронных схем в PSPICE"

Отзывы читателей о книге "Визуальное моделирование электронных схем в PSPICE", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.