Сергей Семиков - Баллистическая теория Ритца и картина мироздания

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Баллистическая теория Ритца и картина мироздания"
Описание и краткое содержание "Баллистическая теория Ритца и картина мироздания" читать бесплатно онлайн.
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Кристаллы зарождаются уже в жидком гелии, причём их число и размеры нарастают с падением температуры. Именно с кристаллизацией связан размытый пик теплоёмкости гелия. Да и эксперименты показали, что в жидком гелии (как в воде) плавают кристаллики, насчитывающие сотни атомов, — "снежки" и "льдинки" [12, 138]. Как любые кристаллы, они нарастают вокруг ядер кристаллизации: ионов и электронов. Рост кристаллов в жидком гелии, как показал физик Аткинс, имеет чисто классические причины [12]. По мере укрупнения кристаллов расстояния между ними растут и, при определённой температуре (2,17 К), они оказываются столь велики, что жидкость переходит в газ (Рис. 184), причём, в силу плавности перехода, — не меняя плотности, словно в критической точке, где свойства жидкости и пара совпадают.
Рис. 184. В зависимости от давления и температуры микрокристаллы, вырастающие в жидком гелии, либо отдаляются, образуя "газовую" фазу, либо смерзаются в единую "снежную" массу гелия.
Но разве могли бы физики спутать газ и жидкость? В случае гелия это вполне возможно. Просто обычно газы не удаётся наблюдать в условиях, когда газ должен напоминать жидкость. Из-за низкой температуры его молекулы будут иметь ничтожную скорость, недостаточную даже для того, чтобы, преодолев силу тяжести, вылететь из сосуда. Такой газ уже не обладает основным свойством газов — заполнять весь предоставленный объём, а скапливается, подобно жидкости, на дне сосуда. В больших масштабах это происходит с земной атмосферой, которая не может покинуть Землю и разливается по ней воздушным океаном. Вот и газ He II возле абсолютного нуля выглядит как жидкость: его можно переливать из стакана в стакан, он течёт, словно жидкость, и, даже, обладает, за счёт заметного коэффициента преломления (плотность 146 кг/м3), — призрачной, едва видимой и волнующейся "поверхностью раздела" (Рис. 185). Примерно так же, уже при комнатных температурах можно "переливать", словно жидкость, из стакана в стакан углекислый газ или зеленовато-жёлтый газ хлор, а также наблюдать, как от костра "фонтаном струй" взлетает разогретый воздух (имеющий чуть иной показатель преломления), или, — как стелится, течёт по земле туман, пар из охлаждённого воздуха.
Рис. 185. Газ из частиц гелия не способных покинуть сосуд.
В то же время, сам жидкий гелий He I сильно смахивает на газ. Он столь прозрачен и лёгок (плотность в десять раз меньше, чем у воды), что усомнишься, — не газ ли это? Как сказано в книге Карцева [61], такое сомнение охватило и Камерлинг-Оннеса, открывшего жидкий гелий: "…и вот уже сосуд наполнен чуть ли не до краёв кипящей жидкостью, настолько прозрачной, что увидеть её почти невозможно. Эта жидкость кажется невесомой, почти несуществующей. А может и нет её — жидкости…?". То же сомнение берёт и в отношении сверхтекучего гелия. Хотя внешне сверхтекучий гелий He II, как нечто среднее между газом и твёрдым телом (Рис. 181), и впрямь должен напоминать жидкость. Вот почему, наблюдая гелий возле абсолютного нуля, газ легко спутать с жидкостью, тем более если эту субстанцию нельзя "пощупать", изучить непосредственно.
В том, что сверхтекучий гелий — это именно газ, а не жидкость, убеждает хотя бы неспособность его кипеть, пузыриться, на что способна любая жидкость. Это можно объяснить только тем, что данная субстанция — многоатомный газ, которому и не надо кипеть для перехода в обычный одноатомный гелий и который просто не может образовать пузырей, не обладая поверхностным натяжением. Однако, неспособность сверхтекучего гелия кипеть, физики объясняют его огромной теплопроводностью. А, ведь, они имеют прямое доказательство превращения жидкого гелия в газ при переходе в сверхтекучее состояние. Так, если при T< 2,17 К снизить давление над жидким гелием, то в нём возникнет бурное кипение, заканчивающееся лишь с переходом в сверхтекучее состояние [134]. Ну разве это не доказывает, что сверхтекучий гелий — газ? Ведь точно так же, при снижении давления, кипит, образуя пары, вода и все другие жидкости. Но физики, имея перед носом столь явное свидетельство, даже не удивятся: с чего бы это вдруг жидкому гелию вскипать пузырьками газа при охлаждении, тем более, раз он всё равно переходит в жидкость (пусть и сверхтекучую), и раз, по их мнению, при температурах ниже 2,17 К гелий в форме газа и газовых пузырьков вообще не существует?
К сожалению, здесь, как во многих других "неклассических" явлениях, теоретики стали всё усложнять, выдумав кучу абсурдных объектов (фононы, ротоны, квантовую жидкость), искусственных гипотез (скажем, формальное деление гелия на сверхтекучую и нормальную компоненты). И всё это — вместо того, чтобы как следует разобраться, провести опыты и найти простое, наглядное, а, потому, и наиболее вероятное объяснение. Впрочем, выводы квантовой физики и теории относительности всегда были скоропалительны и непоследовательны. Любое же классическое объяснение сторонники этих абсурдных теорий отвергали лишь по причине его классичности, даже если оно было проще, точней и естественней их собственного.
Если сверхтекучий гелий — газ, то все его "странности" найдут простое и естественное объяснение. Так, известно, что при погружении пробирки со сверхтекучим гелием в сосуд разница уровней гелия постепенно выравнивается. Обычно это объясняют образованием на поверхности пробирки тонкой плёнки гелия, в которой гелий течёт по принципу сифона. Но и без этого гелий может легко переходить из пробирки в окружающую жидкость и обратно, поскольку стекло пробирки не идеально, оно всегда имеет массу дефектов и микротрещин, из-за своей тонкости служащих непреодолимой преградой для всех жидкостей и газов, кроме сверхтекучего гелия. Сквозь такие поры, трещины стекла, гелий и вытекает (Рис. 186). Поэтому скорость вытекания гелия зависит, как показали опыты, не от длины пути мнимой плёнки, а от числа дефектов стекла — трещин и царапин. Точно так же обнаружили, что сверхтекучий гелий, за счёт ничтожной вязкости, легко проходит сквозь стенки закрытого керамического сосуда, сочась через его тончайшие поры. Даже при комнатной температуре газообразный гелий легко проходит через малейшие трещины и поры герметичных сосудов [90], а при нулевой температуре и вязкости этот газ ещё более пронырлив.
Рис. 186. Выравнивание уровней сверхтекучего гелия, сочащегося сквозь стенки и стекающего по ним в виде иллюзорной плёнки.
Интересен механотермический эффект: если два сосуда, до разной высоты заполненных сверхтекучим гелием, соединить трубкой с наждачным порошком, то, при выравнивании уровней, температура в сосуде, откуда гелий уходит, растёт, а куда притекает — падает. Обычно это объясняют тем, что через трубку протекает лишь сверхтекучий компонент гелия, не несущий тепла [134]. Этим теоретики противоречат сами себе, так как огромную теплопроводность гелия связывают именно со сверхтекучей компонентой, производящей сверхбыстрый перенос тепла. Такая противоречивость характерна для всей квантовой физики. На деле, природа механотермического эффекта тривиальна. Как было сказано, вязкость газа растёт с температурой, — с увеличением скорости молекул. Поэтому, в щели между крупицами наждачного порошка легче проходят молекулы гелия с наименьшими скоростями, образующие гелий с малой вязкостью. Быстрые же молекулы, несущие вязкий гелий, с трудом проходят в поры, "застревают" в них (недаром сверхтекучесть заметна лишь в тонких капиллярах, куда нет доступа быстрым частицам). Поэтому, сосуд, откуда идёт утечка гелия, нагревается: там растёт процент быстрых молекул (Рис. 187.а). А в сосуде, где гелия прибывает, растёт доля медленных молекул, и он остывает. Тонкопористый фильтр, по сути, производит сепарацию молекул по скоростям. Похожее явление мы наблюдаем при испарении жидкости. Так, если капнуть на руку спиртом, то, за счёт ухода с поверхности более энергичных молекул, жидкость быстро охлаждается: её энергия уходит, и преобладать начинают медленные молекулы.
Рис. 187. а) Утечка медленных, "холодных" молекул гелия через тонкопористый фильтр создаёт разницу температур; б) Нагрев ампул ведёт к притоку в них сверхтекучего гелия и выбросу его через сопло.
Существует и термомеханический эффект. В нём, наоборот, нагрев одного из двух сосудов, соединённых фильтром, ведёт к притоку сверхтекучего гелия в нагретый сосуд (Рис. 187.б). Это происходит оттого, что нагретый гелий, имея большую вязкость, практически не проходит через фильтр, в то время как гелий из холодного сосуда, за счёт малой вязкости, легко проходит сквозь капилляры в нагретый сосуд, повышая в нём уровень гелия. При сильном нагреве сосуда приток в него сверхтекучего гелия столь силён, что струя фонтаном бьёт через сопло.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Баллистическая теория Ритца и картина мироздания"
Книги похожие на "Баллистическая теория Ритца и картина мироздания" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Сергей Семиков - Баллистическая теория Ритца и картина мироздания"
Отзывы читателей о книге "Баллистическая теория Ритца и картина мироздания", комментарии и мнения людей о произведении.