Иосиф Розенталь - Геометрия, динамика, вселенная
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Геометрия, динамика, вселенная"
Описание и краткое содержание "Геометрия, динамика, вселенная" читать бесплатно онлайн.
Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.
10. ПЛАНКОВСКАЯ ФИЗИКА. ЯВЛЯЕТСЯ ЛИ ТОЧКА ОСНОВНЫМ ЭЛЕМЕНТОМ ФИЗИЧЕСКОЙ ГЕОМЕТРИИ?
Сейчас, по всеобщему убеждению специалистов, при планковских параметрах l~l|, t~t|, M~M| формируется «истинная» физика в том смысле, что понимание происходящих процессов в этой области приведет к построению единой теории поля, квантовой теории гравитации, созданию теории происхождения Метагалактики (а может быть, и Вселенной) и количественному представлению физической геометрии. Меньше внимания (и, по мнению автора, незаслуженно) уделяется перспективам понимания природы фундаментальных физических констант.
Возникает видимое противоречие между нашими стремлениями завершить стройную конструкцию физики и наблюдательными возможностями, весьма скромными сравнительно с планковскими параметрами.
До сих пор физический эксперимент и теория дополняли друг друга. Однако идея об определяющем значении планковских параметров (которую мы назовем планковской физикой) обрекает нас, по крайней мере в настоящее время, на разрыв с этим принципом, на котором базировалась физика как эмпирическая наука.
Сейчас можно наметить лишь некоторые косвенные эмпирические подходы к планковским параметрам. Прежде всего следует отметить гипотетический распад протона. Если нам повезет и распад будет обнаружен, то мы приоткроем окно в мир энергий ~10**15 ГэВ и расстояний ~10**-29 см, что «всего» на три-четыре порядка отличается от планковских параметров. Если нам повезет вдвойне и окажется, что на характеристики распада протона влияет гравитация, то это может послужить эмпирическим базисом для изучения планковской физики.
Второй подход связан с уникальностью значений фундаментальных постоянных, в том числе и размерности пространства. Если вся физика формируется при планковских параметрах, то и хорошо изученные на опыте фундаментальные постоянные также должны быть связаны с этими параметрами.
Многие теоретики возлагают большие надежды на третий подход к «экспериментальному» исследованию фундаментальной физики при планковских параметрах. Крайне вероятно, что Метагалактика в процессе своей эволюции прошла через область, принадлежащую компетенции планковской физики. Изучение реликтовых следов этого процесса должно способствовать проверке планковской физики. Частично этот подход рассматривается в гл.3 нашей книги.
К сожалению, все отмеченные подходы к проверке планковской физики имеют более или менее косвенный характер. Самая прямолинейная проверка — эмпирическое воспроизведение акта рождения Метагалактики — выше человеческих возможностей.
Однако на путях создания объединенной теории поля и подступах к планковской физике возник в некотором смысле не физический, а математический подход. Его нельзя назвать совершенно новым, поскольку в иной модификации он появился вместе с рождением квантовой теории поля много десятилетий тому назад. Кратко его можно сформулировать в одной фразе: «Правильная теория не должна содержать бесконечностей». Этот тезис появился на заре создания квантовой электродинамики. Частично решение проблемы устранения бесконечностей было найдено в конце сороковых годов Р.Фейнманом, Ю.Швингером и С.Томонагой (так называемый метод перенормировок). Однако предложенный метод не устранял полностью все бесконечности, да и сами логические его основы оставляли желать лучшего. По меткому замечанию одного из создателей новой электродинамики — Р.Фейнмана, метод перенормировок — это способ «убирания мусора под ковер». За истекшие десятилетия продвижение в устранении бесконечностей в рамках квантовой электродинамики как изолированной теории было сравнительно невелико. Однако известный прогресс наметился в процессе создания единой теории взаимодействий, когда суммирование бесконечностей от разных взаимодействий привело к конечным результатам. Этот факт вселил надежду, что объединенная теория не должна содержать бесконечностей. конечность всех результатов — критерий истинности объединенной теории. Математическая форма этого критерия, с одной стороны, и относительно малый эмпирический фундамент планковской физики — с другой, стимулировали огромный поток работ, содержащих новые гипотезы и развитие новых методов математической физики. Выживаемость этих подходов может проверить только время. Здесь мы упомянем лишь некоторые из них, руководствуясь в первую очередь их доступностью и популярностью.
Дж. Уилер полагал, что на малых расстояниях должна существенно усложниться геометрия (топология) физического пространства. В общем виде такая гипотеза кажется весьма правдоподобной, однако конкретное ее воплощение, предложенное Уилером, по-видимому, неверно, поскольку оно не учитывает квантовых свойств элементарных частиц (в частности, их спинов) и разнообразие типов взаимодействий.
М.А.Марков предложил модифицировать уравнения ОТО таким образом, чтобы при M << M| модифицированные уравнения и
p уравнения ОТО совпадали, а при M>~ M| гравитационное
p взаимодействие исчезало и взаимодействие в уравнениях ОТО описывалось бы исключительно λ-членом, что соответствует вакуумному состоянию (см. разд.5 гл.3).
Б. де Витт и С.Хокинг предлагают сложную процедуру квантования с учетом различных возможных топологий в планковской области.
Но, пожалуй, наиболее популярной в настоящее время является гипотеза о том, что элементарным физико-геометрическим объектом является не точка, а струна. Реально сейчас говорят о так называемых суперструнах, однако, чтобы чрезмерно не усложнять изложение введением новых и весьма непривычных понятий, мы будем использовать образ обычной струны. Одной из главных причин, вызвавших появление этого образа, является известный экспериментальный факт — ненаблюдаемость кварков. В соответствии с кварковой гипотезой адроны состоят из кварков (см. Дополнение), которые обречены на пленение в пределах адронов. Рассмотрим для простоты бозон-систему, состоящую из двух кварков. Тогда, полагая, что силы, связывающие оба кварка, подобны натяжению струны, нетрудно объяснить невылетание кварков, допуская, что натяжение пропорционально расстоянию между кварками. В этом случае, чтобы раздвинуть кварки на расстояние l, затрачивается энергия, пропорциональная l. Следовательно, чтобы вынудить кварк покинуть адрон (что соответствует расстоянию l, равному бесконечности), нужно затратить бесконечную энергию, что и определяет невылетание кварков.
Весьма популярный в настоящее время образ суперструн аналогичен струнам, возникшим при описании сильного взаимодействия, с одним существенным различием. Суперструны — объекты с протяженностью порядка планковской длины, и они соответствуют объединению всех взаимодействий, включая гравитацию.
В рамках теории суперструн наметился известный прогресс в устранении бесконечностей в теории поля, были получены характеристики некоторых фундаментальных частиц и т. д.
Эти достижения вселяют надежду на то, что элементарным блоком в физической геометрии является точка, а одномерное образование — струна.
В струнной геометродинамике существует один замечательный факт. На начальном этапе развития струнной теории умели квантовать лишь в том случае, если струна вложена в пространство с размерностью N=26.
Сейчас, после разработки более совершенных методов и перехода к планковским масштабам, эту операцию научились производить при критической размерности N=10. Такое значение почти совпадает с размерностью N=11 пространства Калуца-Клейна (см. разд.7 гл.3), соответствующего геометрической интерпретации объединения всех четырех взаимодействий.
Естественен вопрос: не являются ли струнная геометродинамика и геометрическая интерпретация объединенного взаимодействия a la Калуца-Клейна разными проявлениями одной и той же субстанции?
Струна, свернутая в замкнутую окружность, образует сферу S|. Из множества таких окружностей можно получить
1 сферу любой размерности или другие геометрические фигуры.
Возможность объединения обоих направлений (струнной геометрии и геометрии Калуца-Клейна) является весьма соблазнительной. И хотя оба направления развиваются почти параллельно, кажется, что их слияние будет весьма серьезным шагом на пути решения проблемы планковской физики. Сейчас предпринимаются первые попытки в этом направлении.
ГЛАВА 3. В С Е Л Е Н Н А Я
1. КРАТКАЯ ИСТОРИЯ СОВРЕМЕННОЙ КОСМОЛОГИИ
История современной космологии уникальна. Вероятно, в истории точных наук не было ни одной темы, которая на протяжении сравнительно короткого срока (70 лет) подверглась бы столь многочисленным кардинальным переоценкам. Едва ли подобная ситуация — следствие случайных заблуждений и прозрений. На наш взгляд, существовали глубокие причины зигзагов в науке о мироздании. Кратко можно назвать три такие причины. 1. Вера в неизменность Вселенной, господствовавшая в течение многих столетий. 2. Вдохновляющая грандиозность предмета космологии. 3. Скудость наблюдательных данных о мире как целом, обуславливающая отсутствие значительных барьеров для беспочвенных фантазий.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Геометрия, динамика, вселенная"
Книги похожие на "Геометрия, динамика, вселенная" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Иосиф Розенталь - Геометрия, динамика, вселенная"
Отзывы читателей о книге "Геометрия, динамика, вселенная", комментарии и мнения людей о произведении.