» » » » Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд


Авторские права

Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд

Здесь можно скачать бесплатно "Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Мир, год 1990. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд
Рейтинг:
Название:
Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд
Издательство:
Мир
Год:
1990
ISBN:
5-03-001195-1 (русск) 3-492-10343-X (нем)
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд"

Описание и краткое содержание "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд" читать бесплатно онлайн.



Книга астронома из ФРГ посвящена изложению современных взглядов на свойства, строение, происхождение и эволюцию звезд. Не применяя математики и сложной терминологии, автор просто и наглядно объясняет все основные результаты теории звезд, начиная с ее классических разделов и кончая самыми современными данными о пульсарах, рентгеновских звездах и черных дырах.






Итак, мы нашли механизм, объясняющий регулярность посылаемых пульсаром импульсов. Однако нужно еще понять, как именно возникает радиоизлучение. Поскольку речь идет не о непрерывной волне, а об импульсе, при котором в течение большей части периода энергия равна нулю и лишь кратковременно энергия очень велика, можно предположить, что звезда посылает излучение в определенном направлении и мы регистрируем его в тот момент, когда луч вращающейся звезды-прожектора «чиркает» по Земле — точно так же, как с корабля видят луч вращающегося фонаря на маяке.

По всей видимости, нейтронная звезда обладает магнитным полем, подобно Земле, но значительно более сильным (мы вернемся к этому в гл. 10 в связи с рентгеновскими звездами). Предположим, что магнитная ось звезды не совпадает, как и у Земли, с ее осью вращения. При вращении нейтронной звезды магнитное поле также вращается, и получается картина, показанная на рис. 8.10: на поверхности вращающейся нейтронной звезды, обладающей магнитным полем, где нейтроны вновь превращаются в протоны и электроны, господствуют мощные электрические силы, под действием которых заряженные частицы уносятся прочь от звезды. Частицы движутся вдоль магнитных силовых линий в пространстве. Их энергии достаточно для того, чтобы Крабовидная туманность и сегодня, через тысячу лет после своего возникновения, могла светиться. Движение заряженных частиц поперек магнитных силовых линий затруднено, поэтому они покидают нейтронную звезду, главным образом в области ее магнитных полюсов, уходя вдоль искривленных силовых линий. Это схематически показано на рис. 8.10. Электроны, как самые легкие частицы, покидают звезду с самой большой скоростью, близкой, по всей видимости, к скорости света. Двигаясь со столь высокой скоростью по искривленной траектории, электрон излучает энергию, причем не во все стороны, а преимущественно в направлении своего движения. Таким образом, излучение звезды в целом направлено вдоль выходящих из звезды силовых линий магнитного поля. А так как магнитное поле вращается вместе со звездой, вращаются и конические пучки выходящего излучения. Удаленный наблюдатель видит их в тот момент, когда он попадает в один из этих двух конусов; для него нейтронная звезда будет вспыхивать с частотой, соответствующей скорости ее вращения. Многие астрофизики сегодня считают, что эта модель, напоминающая вращающийся прожектор морского маяка, во многом верна.

Рис. 8.10. Возможная модель возникновения сигналов пульсара. Вблизи магнитных полюсов N и S вращающейся нейтронной звезды электроны вылетают с близкой к световой скоростью вдоль магнитных силовых линий в пространство. При этом они излучают вблизи звезды энергию в направлении, близком к направлению вылета (красные волнистые стрелки). Поэтому от звезды в пространство идут два конуса излучения (справа), которые вращаются вместе со звездой. Эти конусы бегут в пространстве, как лучи двух прожекторов. Наблюдатель регистрирует излучение, только когда оказывается в луче. Ему кажется, что нейтронная звезда вспыхивает с частотой, соответствующей частоте ее вращения.

Вопросы, на которые нет ответов

Весной 1969 г. две обсерватории независимо одна от другой обнаружили, что медленное, но неуклонное нарастание периода пульсара нарушилось и интервал между двумя соседними импульсами сократился (рис. 8.11). Затем период вновь стал увеличиваться с прежней скоростью. Мы приняли, что пульсар является вращающейся нейтронной звездой, вращение которой постепенно замедляется из-за передачи энергии в окружающую среду. Что же могло заставить звезду ускорить свое вращение?

Рис. 8.11. Скачкообразное изменение периода пульсара. Период пульсара постепенно увеличивается, затем скачком уменьшается (справа вверху) и снова продолжает расти.

Изменение периода происходит скачкообразно. Физики-ядерщики, лучше знакомые с нейтронами, чем астрофизики, высказали такое предположение. На поверхности нейтронной звезды образовались прочные корки-«плиты», которые при охлаждении нейтронной звезды, оставшейся после взрыва сверхновой, отрываются одна от другой. В результате подобных сдвигов и оползней скорость вращения нейтронной звезды может увеличиваться. Объясняет ли это резкое сокращение периода, которое с тех пор наблюдалось уже неоднократно? Глобальные движения земной коры действительно сказываются на скорости вращения Земли и, следовательно, на продолжительности суток. Наблюдается ли нечто подобное и у пульсаров? Не являются ли наблюдаемые скачки их периода свидетельством происходящих в них катаклизмов? В последнее десятилетие значительные успехи достигнуты в новой области наблюдательной астрономии — так называемой гамма-астрономии. Гамма-излучение можно рассматривать как свет с очень малой длиной волны, еще более короткой, чем у рентгеновского излучения. Гамма-излучение обладает очень высокой энергией: отдельный гамма-квант несет примерно в миллион раз больше энергии, чем квант видимого света. Однако гамма-излучение, как и рентгеновское, почти не проходит сквозь атмосферу Земли, поэтому исследование приходящих из Вселенной гамма-лучей началось лишь после того, как с помощью ракет и спутников наблюдения стали осуществляться из космоса. К наиболее впечатляющим открытиям в области гамма-астрономии относится тот факт, что многие пульсары посылают импульсы и в гамма-диапазоне. Благодаря огромной энергии гамма-квантов складывается впечатление, что именно гамма-излучение является для пульсаров основным, в то время как радиоизлучение, по которому пульсары были впервые обнаружены, оказывается скорее побочным эффектом, который можно уподобить звуку, сопровождающему разрыв снаряда. Гамма-импульсы идут в том же ритме, что и радиоимпульсы, но не совпадают с ними. Явления, связанные с гамма-излучением пульсаров, до сих пор не поняты.

С точки зрения астрономов пульсары представляют еще одну сложность. В настоящее время уже известно такое количество пульсаров, что можно предположить существование в одной только нашей Галактике около миллиона активно действующих пульсаров. С другой стороны, несколько последних десятилетий ведутся наблюдения удаленных галактик с целью установить, какое количество взрывов сверхновых происходит в среднем за столетие. Это позволяет сделать вывод о том, сколько нейтронных звезд возникло с древнейших времен в нашем Млечном Пути. Оказывается, что число пульсаров значительно превосходит то количество нейтронных звезд, которое могло образоваться в результате взрывов сверхновых. Значит ли это, что пульсары могут возникать и иным путем? Быть может, некоторые пульсары образуются не в результате взрывов звезд, а в ходе менее эффектных, но более упорядоченных и мирных процессов?[24]

За открытие пульсаров Энтони Хьюишу в 1974 г. была присуждена Нобелевская премия по физике. Открытие действительно было выдающимся, и лишь название оказалось неточным. Пульсары вовсе не пульсируют. Это название дали им тогда, когда еще полагали, что это звезды, которые, подобно цефеидам, периодически расширяются и сжимаются. Теперь мы знает, что пульсары — это вращающиеся нейтронные звезды. Однако название прижилось. Но можем ли мы быть полностью уверены в том, что Томми Голд прав? Действительно ли пульсары — это нейтронные звезды? Тень сомнения оставалась у астрофизиков до тех пор, пока не были обнаружены рентгеновские звезды. Но о них мы узнаем в гл. 10.

Глава 9

Когда звезда у звезды крадет массу

Как мы уже знаем, двойные звезды оказались для астрофизиков чрезвычайно благодарным объектом исследований. Двойные звезды позволяют узнать гораздо больше, чем одиночные. Это относится не только к рентгеновским звездам, о которых пойдет речь в следующей главе, но и к обычным звездам, входящим в двойные системы. Некоторое время назад считалось даже, что двойные звезды доказали нам неправильность всех прежних представлений о развитии звезд. Некоторые исследователи двойных систем были убеждены в том, что звезды развиваются совершенно не так, как показывают результаты компьютерного моделирования, проведенного в 50-60-е годы.

Почву для сомнений дал определенный тип двойных звезд, знакомство с которыми началось, когда в 1667 г. астроном из Болоньи Джемиани Монтанари заметил, что вторая по яркости звезда в созвездии Персея какое-то время светила гораздо слабее, чем прежде.

Алголь, Голова дьявола

Птолемей называл эту звезду Головой Медузы, которую Персей (в его честь названо созвездие) держит в руке. Евреи дали ей имя Голова дьявола, а арабы — Рас аль Гуль, что означает «неспокойный дух». К арабскому названию восходит и современное наименование этой звезды: Алголь. Монтанари заметил, что Алголь — переменная звезда, а более чем через сто лет 18-летний англичанин Джон Гудрайк понял, в чем тут дело. В ночь на 12 ноября 1782 года он был поражен тем, что яркость звезды уменьшилась раз в шесть по сравнению с обычной. Следующей ночью Алголь вновь ярко сиял. 28 декабря того же года явление повторилось: в 17.30 Алголь светил слабо, но через три с половиной часа он вновь был ярким. Гудрайк продолжал наблюдения, и вскоре ключ к загадке был найден. Обычно Алголь ярок, но через каждые 69 часов его яркость в течение 3,5 часа убывает более чем в шесть раз, а в следующие 3,5 часа восстанавливается до нормальной.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд"

Книги похожие на "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рудольф Киппенхан

Рудольф Киппенхан - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рудольф Киппенхан - Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд"

Отзывы читателей о книге "Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.