Авторские права

Виктор Финкель - Портрет трещины

Здесь можно скачать бесплатно "Виктор Финкель - Портрет трещины" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Виктор Финкель - Портрет трещины
Рейтинг:
Название:
Портрет трещины
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Портрет трещины"

Описание и краткое содержание "Портрет трещины" читать бесплатно онлайн.



Разрушение… Мы сталкиваемся с ним ежедневно, ежечасно. Вот слабый стебель травы пророс сквозь асфальт и победно зеленеет. Как это призошло? Вот совершенно неожиданно переломилась мощная металлическая конструкция, которой стоять бы века… Почему? В чем причина катастроф и разрушений, происходящих в мире прочнейших материалов? Как ведет себя микроскопическая трещинка, откуда у нее такая сила и такое коварство? Как человек учится управлять этой страшной силой и обращать ее себе на пользу? На эти и многие другие вопросы отвечает автор. Непринужденная форма изложения, поэтические примеры, подтверждающие мысль автора, делают книгу интересной и познавательной. Книга предназначена для широкого круга читателей, для всех, кто хочет постичь одну из великих загадок природы. И прежде всего она адресована молодежи, стоящей перед выбором профессии.






Вот бы перекрыть их! В этом отношении немалые надежды подают нам точки, где сохранятся воедино границы трех зерен. Они оказываются крепкими орешками для любой, в том числе и для предельно быстрой трещины. Причин этому несколько. Прежде всего тройной стык – это три «вертикальных» ряда дислокаций, сошедшихся в одну точку. Надо сказать, что до сих пор мы не знаем, что происходит в этой самой точке. Каковы там перемещения атомов, что произошло с кристаллической решеткой? Поэтому нельзя сказать что-либо определенное

о природе взаимодействия трещины с самим тройным стыком. Зато ясно, что происходит при малейшем удалении от геометрической точки стыка. Тройной узел окружен двумя сортами напряжений. Термическими и упругими – от собственно дислокаций в стенках. И те, и другие гораздо больше, чем у простой границы. И что немаловажно, они простираются значительно дальше. Например, поля напряжений от дислокаций занимают в 10 раз большее пространство, чем у обычной стенки. Неудивительно, что напряжения эти, начиная действовать раньше, вызывают больший эффект торможения. Но это не все. Поле напряжений в окрестностях узла настолько сложное, что трещина, привыкшая в обычном монокристалле к расположению только по плоскости спайности, здесь «теряет свое лицо». Она распадается на множество мельчайших трещинок, способных размещаться даже не в спайности! Она вынуждена круто разворачиваться, описывать криволинейные пути, ветвиться. Словом, от монолитной трещины мало что остается. В этих условиях трещина, испытывающая, по выражению О. Мандельштама, «голод по рассеченному пространству», превращается из хищника в жертву. Она напоминает впервые оседланного дикого мустанга, взмыленного, мчащегося в облаке пыли по кругу. Он еще надеется разорвать удила, но уже навсегда потерял свободу. В нем еще буйствует сила разрушения и зла, но он уже неспособен обрушить ее на людей.

Неудивительно поэтому «повальное» торможение трещин на стыках трех зерен. Вот только относительно редко «напарывается» трещина на сам стык. Чаще, гораздо чаще она проходит стороной и не испытывает на себе его влияния.

Однако дислокации могут выстраиваться не только в затылок друг к другу. Они не прочь стоять и шеренгами «плечо к плечу», словно бы крепко взявшись за руки. Так, они расположены в плоскостях скольжения. Экстраплоскости всех этих дислокаций направлены зачастую в одну и ту же сторону. Иначе говоря, они могут быть одного знака. В этом случае по одну сторону плоскости скольжения преобладают напряжения сжатия, а по другую – растяжения. Ясно поэтому, что если трещина подходит к полосе скольжения со стороны сжатия, она обязана притормаживаться. В противном случае может и ускориться. Однако, пройдя такую полосу, трещина

опять попадает в область сжатия… Опыты показывают в целом благоприятное тормозящее влияние полос скольжения любой ориентации на трещину. Разрушение, как и в случае межзеренных сочленений, теряет монолитность и распадается на множество мельчайших трещинок, поворачивает вдоль полосы и распространяется параллельно ей. А в отдельных случаях способно даже поворачивать назад! Чтобы прорвать полосу скольжения, трещине совершенно необходимо занимать и тратить упругую энергию.

Трещина гибельна лишь для одной или нескольких полос скольжения. Системы, содержащие десятки и сотни полос, ее не боятся и способны остановить. Особенно устойчивы пачки, состоящие из пересекающихся полос скольжения. Здесь образуются настолько мощные поля сжимающих напряжений, что даже закритическая трещина часто не в состоянии их преодолеть.

В 1934 году советские физики Н. А. Бриллиантов и И. В. Обреимов обнаружили в кристаллах ЫаС1 области с очень большим разворотом кристаллической решетки и назвали их иррациональными двойниками. Вокруг этого термина разгорелась дискуссия, потому что выяснилось: с двойникованием эти дефекты не имели ничего общего. В. Л. Инденбом и А. А. Урусовская доказали, что «двойники» Бриллиантова-Обреимова связаны с пластической деформацией. Дислокационные процессы лежат в корне этого дефекта. Выяснилось, что из-за неоднородности напряженного состояния поперечное сечение кристалла деформировалось неодинаково. В результате множественных сдвигов образовался взаимный разворот смежных областей кристалла на углы в несколько градусов. Возникающая при этом дислокационная структура в некотором отношении подобна структуре, образующейся при одновременном сдвиге по различным пересекающимся плоскостям скольжения. И опыты, и расчеты показали, что вокруг и внутри полосы Бриллиантова-Обреимова существуют весьма мощные поля сжимающих напряжений. Мы уже знаем, что это дает надежду на тормозящие свойства дефекта. Интересна и такая деталь. Полоса «умудряется» тормозить трещину не только перед собой, но (в случае прорыва) и за собой: что-то вроде приема древних греческих воинов – лечь на землю и, прикрываясь щитами, пропустить вражескую конницу. А затем ударить ей в тыл. Физический же смысл

этого явления здесь понятен. Полоса Бриллиантова-Обреимова создает сжимающие напряжения как впереди себя, так и позади. Неудивительно поэтому, что полосы эти почти не имеют себе равных по влиянию на трещину. Если одна из них задерживает быструю трещину на 20- 30 мкс, то две-три останавливают разрушение при любых скоростях его распространения. Говоря о дефектах, способных остановить раскол, нельзя не упомянуть так называемый сброс. Термин этот геологический и означает он смещение одной части поверхности земли по отношению к другой. Причем смещение идет по высоте, и по простиранию, то есть вдоль поверхности. Металло-и кристаллофизики переняли этот термин и придали ему следующий смысл: плоскости скольжения кристалла должны превратиться в плавно изгибающуюся ступеньку.

Как же осуществить это на практике? Очень просто. Пусть на одной половине плоскости скольжения скопятся дислокации одного знака. Тогда плоскость изогнется выпуклостью в сторону «торчащих» экстраплоскостей. А на второй половине плоскости скольжения пусть столпятся дислокации противоположного знака. Очевидно, там кривизна будет противоположной. Так образовались две полочки сброса. Теперь остается соединить их наклонной плоскостью без дислокаций и сброс «готов». Размеры сбросов в кристаллах типа цинка исчисляются миллиметрами. В обычной стали они намного меньше – измеряются десятками и сотнями микрон. Углы разворота материала в полосах сброса могут быть довольно значительными и достигать 30-40°. Плотность дислокаций в сбросе очень велика – до 10 млрд. на 1 см2.

Как же взаимодействует такой 5-образный сброс с трещиной? По-вражески. Еще на далеких подступах он задерживает трещину, «выставляя» против нее поля сжимающих напряжений. Эти же поля действуют и в сердцевине сброса. Из-за их чрезвычайной сложности трещина, проникшая в ядро сброса, движется ступеньками, распадается на мелкие трещинки. Часто она останавливается и создает перед собой вторичные дочерние трещины. Потом, объединяясь с ними, проскакивает вперед и так далее. Словом, это не развернутое шествие, а тяжелая работа, требующая большого запаса упругой энергии и времени. Итак, сброс – это серьезное препятствие на пути трещин – и медленной и быстрой.

Пора подвести итог. Что же общего во влиянии на

разрушение со стороны отдельных дислокаций, полос скольжения, межзеренных сочленений, полос Бриллиан-това-Обреимова и сброса? Ведь дело не в отдельных, может быть иногда и случайных фактах, событиях, результатах экспериментально. Важно ответить на вопрос: в чем их корень? Корнем этим являются дислокация и ее упругое поле. Причем не растягивающая и сдвигающая его компоненты, а только поле сжатия. Именно оно в первую очередь и сражается с трещиной. Немалую роль играет и сама линия винтовой дислокации.

Следовательно, первые «бойцы», встающие на пути трещины и способные оказать ей сопротивление, – это дефекты кристаллической решетки. Поэтому металл с высоким сопротивлением разрушению должен содержать определенный набор этих неправильностей, расположенных к тому же определенным образом.

Читатель может задать каверзный вопрос: а как же быть с носителями предельной прочности – усами? Или с монолитными монокристаллами, начисто лишенными дислокаций?

Боюсь, что ответ будет неутешительным. Образование в таких материалах дислокации или зародышевой трещины затруднительно. Но что касается роста в них уже существующей трещины… Он пойдет очень быстро и легко. Практически разрушение бездислокационных монокристаллов, уж если оно началось, протекает как у весьма хрупкого тела. Это неудивительно, потому что такой амортизатор, как пластическая деформация, отсутствует. Вот уж действительно, в поисках высокого сопротивления растущей трещине нам следует уподобиться персонажу сатирика Ф. Кривина – Жабоногу:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Портрет трещины"

Книги похожие на "Портрет трещины" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Виктор Финкель

Виктор Финкель - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Виктор Финкель - Портрет трещины"

Отзывы читателей о книге "Портрет трещины", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.