» » » » Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее


Авторские права

Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

Здесь можно скачать бесплатно "Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Юнацтва, год 1991. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее
Рейтинг:
Название:
Открытие Вселенной - прошлое, настоящее, будущее
Издательство:
Юнацтва
Год:
1991
ISBN:
5-7880-0325-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Открытие Вселенной - прошлое, настоящее, будущее"

Описание и краткое содержание "Открытие Вселенной - прошлое, настоящее, будущее" читать бесплатно онлайн.



На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.






3. Надежды

Есть круг проблем, к решению которых физика элементарных частиц подошла вплотную, и ожидаемые результаты должны по-новому осветить принципиальные моменты современной картины строения и эволюции Вселенной.

Многие надежды связываются с недавними достижениями в нейтринных исследованиях. Окончательное подтверждение ненулевой массы покоя электронного нейтрино и измерение масс его μ- и τ-аналогов скорее всего приведет к тому, что Вселенная станет для нас преимущественно нейтринным объектом — самые трудноуловимые частицы дадут основной вклад в среднюю плотность материи, а следовательно, и в распределении гравитационных полей в самых больших масштабах. Массивные нейтрино уже сейчас решительно вмешиваются в модели формирования крупных структур — галактик и галактических скоплений[211].

Массивные реликтовые нейтрино с очень малыми скоростями (v ~ 300 м/с) и большой дебройлевской длиной волны (λν~ ћ/mνc ~10-2 см) должны оказывать заметное силовое воздействие на пористые тела с размером пор ~ λν. Этот так называемый нейтринный ветер может оказаться крайне серьезным фактором в картине движения космической пыли и более крупных тел.

Многого можно ожидать и от исследования сверхгорячих нейтрино. При современных энергиях нейтринных пучков сечение их взаимодействия с нуклонами линейно растет с энергией (до 250 ГэВ). В соответствии с теорией электрослабого взаимодействия, этот рост должен заметно замедлиться в районе Eν ~ 3000 ГэВ.

На той или иной стадии реализации находятся и другие проекты, работы на ускорителях, которые позволят экспериментально в деталях проверить электрослабую теорию, и поискать новые экзотические частицы, лежащие в рамках ее предсказаний (так называемые хиггсовские бозоны) и не связанные с ней (например, новые резонансы, соответствующие tt-кварковой паре, подобно тому, как cc соответствует J/? — мезону, а J/ψ -мезону, а bb — ¡-мезону).

Разумеется, при всей своей важности поиск новых частиц не составляет единственной цели. Очень большие надежды возлагаются на прояснение картины сильных взаимодействий. Разгоняя протоны, мы фактически разгоняем кварковые пучки (но, конечно, на каждый кварк приходится лишь какая-то доля энергии, скажем, 1/3 или того меньше). Можно полагать, что характер межкварковых взаимодействий с ростом энергии станет понятней. Важная задача — выявить закономерности синтеза адронов из горячего кварк-глюонного вещества, образующегося в области взаимодействия.

Астрофизические и космологические последствия установления этой картины трудно переоценить. Одна только возможность открытия — пусть крайне гипотетичная — каких-то неадронных форм относительно стабильной организации кварк-глюонного вещества способна воодушевить на самые смелые экспериментальные проекты.

Но в программах работ стоят и стратегические задачи дальнего прицела. В настоящее время многие физики верят в вариант так называемого Великого Объединения — теорию, которая описала бы кварки, лептоны и промежуточные бозонные поля единой схемой некоторого электроядерного взаимодействия. Было бы приятно выяснить, что на расстояниях ~ 10–29 см лептоны и кварки ведут себя как одно семейство. Неплохие модели такого объединения уже заготовлены, но масштаб его соответствует фантастически высоким энергиям 1014–1015 ГэВ (~10-5 ÷ 10-4 ЕР!). Именно такого порядка массы предсказывают модели великого объединения для промежуточных Х-бозонов, за счет которых кварки могут трансформироваться в лептоны и наоборот.

Реально процесс кварк-лептонных переходов ведет к предсказанию таких интереснейших явлений, как нестабильность протона. Например, протон может самопроизвольно распадаться на π0-мезон и позитрон (р " π0 + е+). Происходит это потому, что d-кварк и один из u-кварков протона, обмениваясь Х-бозоном с зарядом + 4/3, преобразуются в анти-u-кварк и позитрон. Оставшийся u-кварк и получившийся и объединяются в π0-мезон, а позитрон свободно покидает область взаимодействия.

Вся совокупность наблюдений указывает на высокую стабильность протона — его среднее время жизни не меньше 1032 лет, иначе окружающий мир выглядел бы совсем по-иному. Поэтому вероятность процессов распада должна быть крайне мала, и, по сути, из-за этого и приходится выбирать столь огромную массу Х-бозона. Строительство ускорителя для прямой генерации таких суперчастиц — дело далекого будущего, но распад протона ищут уже сейчас. Если его среднее время жизни действительно не превышает 1031 или 1032 лет, то в объеме вещества, заключающем, скажем, 1033 протонов (порядка 1000 тонн), должно происходить в среднем 100 или 10 распадов в год, соответственно. Хотелось бы верить, что к моменту выхода этой книги распад протона станет экспериментально установленным фактом, и мы получим сильнейшее указание на то, что при энергиях частиц ~ 1015 ГэВ (на расстояниях ~ 10–29 см) электрослабые и цветные межкварковые взаимодействия сливаются в единую электроядерную силу.


Гипотетический распад протона (р " π0 + е+)


Однако стремление к энергии ~1015 ГэВ представляется в основном проблемой, завещаемой 21 веку. Не все так просто и с очень привлекательным, но так и не зарегистрированным распадом протона — похоже, что в теоретических схемах вступают в игру параметры, подозрительно близкие к планковской области[212]. Тем более велик шанс натолкнуться на необычные — хотя и нельзя сказать, чтоб столь уж неожиданные, — явления, связанные с лептонами и кварками.

Попытка сохранить внутрипротонные сечения взаимодействия кварков на уровне σ > σP резко ограничивает массы Х-бозонов в схеме типа великого объединения: MX À 3.108 mp. Но если такие Х-бозоны по-прежнему давали бы переходы кварк-лептон, протон жил бы в среднем не более миллиона лет, и во Вселенной не было бы даже водорода. Таким образом, слишком далекие экстраполяции таят в себе немало неожиданностей!

Не представляют ли 6 лептонов низшие уровни какого-то богатого лептонного спектра, а кварки — соответственно кваркового? Иными словами, не возникнет ли со временем чего-то в духе «субадронной спектроскопии», где лептоны и кварки (и, возможно, ныне известные бозоны) окажутся сверхплотными связанными состояниями неких субкварков? Эти вопросы весьма важны, тем более что пока нет удовлетворительных идей по поводу происхождения лептонных и кварковых масс. Варианты со следующим структурным уровнем вещества активно изучаются теоретиками.

Кажущаяся простота в обращении с точечными лептонами и кварками не должна обманывать. Полагая, что эффективный размер электрона меньше 10–15 см, мы фактически утверждаем, что плотность его заметно превышает ядерную: ½ > 1018 г/см3, а для мюона она больше в 200 раз. Если точечность электрона нарушится на расстояниях порядка 10–27 см, мы получим объект той же плотности, которая встречалась при обсуждении космического микронаселения (½ ~ 1052 г/см3). Это может произойти или нет, но в любом случае рассмотрения частиц вблизи планковской области вряд ли обойдется без появления эффективной структуры.

Иными словами, надо быть готовым к такой ситуации, когда типичное для современной квантовой теории поля представление о мгновенном рождении готового лептона, кварка или обменного бозона окажется недостаточным и придется рассматривать процесс синтеза этих частиц из чего-то более фундаментального. Я не хочу сказать, что лептоны и кварки непременно ждет судьба адронов — новый уровень структур наверняка преподнесет нечто новое. Но космология, так или иначе, потребует ответа на вопрос об эпохах кваркового и лептонного синтеза.

Успех электрослабой теории и удачные модели Великого Объединения поставили на повестку дня следующий этап обобщения — программу Суперобъединения, где гравитация вошла бы в игру на равной основе с остальными взаимодействиями. Масштабы суперобъединения должны определяться планковскими параметрами. Надо представлять, что выход в область, где само пространство-время наряду с любыми элементарными частицами нуждается в выяснении механизма синтеза и не может быть введено как извечная арена событий, потребует очень больших усилий и, скорее всего, многих принципиальных преобразований нашего мировоззрения.

Так из краткого обзора современного состояния физики элементарных частиц мы постепенно проникли в сферу интригующих перспектив. Многие из них не слишком близки. Продвинуться от достигнутых на современных коллайдерах энергий (порядка 1 ТэВ в системе центра инерции) до планковского предела это значит преодолеть 16 порядков по энергетической шкале, и по пути наверняка придется испытать не одно техническое и теоретическое перевооружение.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Открытие Вселенной - прошлое, настоящее, будущее"

Книги похожие на "Открытие Вселенной - прошлое, настоящее, будущее" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Потупа

Александр Потупа - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее"

Отзывы читателей о книге "Открытие Вселенной - прошлое, настоящее, будущее", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.