» » » » Даниил Данин - Вероятностный мир


Авторские права

Даниил Данин - Вероятностный мир

Здесь можно скачать бесплатно "Даниил Данин - Вероятностный мир" в формате fb2, epub, txt, doc, pdf. Жанр: Альтернативная история, издательство Знание, год 1981. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Даниил Данин - Вероятностный мир
Рейтинг:
Название:
Вероятностный мир
Издательство:
Знание
Год:
1981
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Вероятностный мир"

Описание и краткое содержание "Вероятностный мир" читать бесплатно онлайн.



14 декабря 1900 года впервые прозвучало слово «квант». Макс Планк, произнесший его, проявил осторожность: это только рабочая гипотеза. Однако прошло не так много времени, и Эйнштейн с завидной смелостью заявил: квант — это реальность! Но становление квантовой механики не было спокойно триумфальным. Здесь как никогда прежде драма идей тесно сплеталась с драмой людей, создававших новую физику. Об этом и рассказывается в научно–художественной книге, написанной автором таких известных произведений о науке, как «Неизбежность странного мира», «Резерфорд», «Нильс Бор». Собирая материал для своих книг, автор дважды работал в архиве Института теоретической физики в Копенгагене.

Книга научно–художественная. Для широкого круга читателей.






Как и следовало ожидать, природа нигде не водрузила пограничного столба с категорическим оповещением: «Досель — владения Галилея — Ньютона — Кеплера, а отсель — Планка — Эйнштейна — Бора». Непереходимого рубежа между атомным миром и миром зримым нет. Ожидать этого следовало ну хотя бы потому, что в противном случае мы с вами, размышляющие на досуге о законодательстве природы, не удостоились бы чести быть сложными конструкциями из атомов (и не сумели бы размышлять о них).

Ради одного философского удовлетворения Бору сто ило из своей теории извлечь «соображения сходства», или принцип соответствия. Но извлек он этот принцип — из формул и опыта — по причине иных, менее возвышенных побуждений.

Надо было еще многое объяснить в поведении атомов как излучателей квантов, не говоря уже об их химических повадках и многом другом. А то, что в движении электронов на атомной периферии, чем дальше от ядра, тем явственней проявлялись классические черты, обнадеживало. Напрашивалась мысль, что удастся раздобыть искомые квантовые формулы по сходству — по соответствию! — с уже известными классическими закономерностями.

Кажется, никогда еще не добывалось таким логически противозаконным путем теоретическое знание в физике, прославленной своей логической требовательностью. Почти неправдоподобно признание одного из гениев боровской школы — Вернера Гейзенберга:

«…Наши усилия были посвящены не столько выводу корректных математических соотношений, сколько угадыванию их по сходству с формулами классической теории».

И ведь угадывали!

Арнольд Зоммерфельд восхищенно говаривал о «волшебной палочке принципа соответствия»: так много хороших— согласных с природой — ответов давала квантовая модель атома даже в своей первоначальной форме, далекой от совершенства. Даже когда она еще не умела разрешить сомнений Резерфорда, Брэгга, Рэлея, Лоренца и других. Стало быть, заключалось в ее основах (покуда не проявленных) что–то глубинно верное, не так ли? Знать бы, что именно?

Тот же Зоммерфельд писал в начале 20–х годов Эйнштейну:

«Все ладится, но глубокие основы остаются неясными».

Точно вторя ему, Макс Борн называл «совершенно таинственными глубокие причины, лежащие в основе» теории Бора.

Не сомневаясь в ее справедливости, сам Эйнштейн восклицал в своем обычном мягко ироническом стиле:

«Если бы я только знал, какие винтики использует при этом господь–бог!»

А многие физики как раз на то и надеялись в конце 10–х и начале 20–х годов, что он–то, Эйнштейн, и сумеет выведать у природы, какие винтики пустила она в ход, конструируя атомный излучатель квантов, да и вообще конструируя микромир. Отражая эту надежду на проницательность создателя квантовой теории света, снова Зоммерфельд писал Эйнштейну так:

«Вы раздумываете над фундаментальными проблемами световых квантов. А я, не чувствуя в себе нужных для этого сил, удовлетворяюсь прояснением деталей квантовых чудес в спектрах… Но для понимания их физической сути я ничего не могу придумать».

И еще так:

«Я могу помочь развитию лишь техники квантов. Вы должны построить их философию».

Однако не Эйнштейну суждено было ее построить. Напротив, ему суждено было стать ее пожизненным противником — неутомимым, изобретательным, стойким, но напрасным оппонентом. И это тем драматичней, что он стоял у колыбели «философии квантов». Больше того: он доверил этой колыбели дитя, которому предстояло расти и крепнуть.

Дитя было кентавром: в нем соединились свойства частиц и волн.

5

Идея существования микрокентавров — идея волн–частиц — не имела ни малейшего отношения к спасению планетарной модели атома от неустойчивости. Да, скачки по энергетической лестнице сопровождаются испусканием или поглощением квантов света. Но для теории атома было безразлично, что такое всякий квант в пространственном отношении — четко ли очерченная корпускула излучения или цепочка электромагнитных волн? И было это безразлично до такой степени, что сам Нильс Бор позволял себе отрицать реальность световых частиц Эйнштейна, а признавал только кванты Планка — порции, какими отмеривается в природе электромагнитная энергия излучения. И это понятно: ведь поначалу Бору лишь одно важно было — как отмеривается излучение. Кванты отмеривались излучающим атомом как разности между двумя уровнями энергии. Вот и все. А странности поведения световых квантов, покинувших атом, Бора тогда не волновали.

Происходило нечто нам уже знакомое и обычное для истории истинной науки: ради достижения успеха познание снова ограничивало свою задачу. И снова вспоминается платоновский Тимей:

«Если мы хотим заниматься астрономией, то нам незачем интересоваться небесными телами».

Но лишь до поры, до времени, не так ли? Разумеется. И в своей книге о Ньютоне Сергей Иванович Вавилов добавил это уточнение к мысли Платона, написав:

«Многие этапы истории науки сопровождались закрыванием глаз до поры до времени на группы факторов и целые области явлений, усложняющих задачу».

Странность, заложенная, очевидно, в природе квантов, отражалась в обескураживающей двойственности их поведения — то корпускулы, то волны…

Замечательно, что эта двойственность света была замечена физиками давным–давно. Два с лишним века назад — в 1756 году — Ломоносов уже подытоживал разные взгляды на движение «тончайшей и неосязаемой материи света»:

«Первое движение может быть текущее, или проходное, как Гассенд и Невтон думают, которым эфир (материю света с древними и многими новыми так называю) движется от солнца и от других великих или малых светящих тел во все стороны наподобие реки беспрестанно. Второе движение может в эфире быть зыблющееся по Картезиеву и Гугениеву мнению, которым он наподобие весьма мелких и частых волн во все стороны от солнца действует…»

Тут Гассенд и Невтон — Гассенди и Ньютон — означены как сторонники корпускулярной теории света, по которой свет — поток частиц. А Картезий и Гугений — Декарт и Гюйгенс — представлены как сторонники волновой теории, по которой свет — поток волн. И вот что интересно: уже тогда Ломоносов должен был признать реальность обоих типов поведения света: он сказал про световую материю, что эти «возможные движения» мы действительно «в оной находим». И будущему поручил разобраться в истинности возникших теорий. Частицы или волны? «Которые действительно есть, или нет, — после окажется»!

Очень долго — С. И. Вавилов полагал, что на протяжении 150 лет, — волновая теория не умела объяснить элементарнейший факт: прямолинейное распространение света. Пожалуй, именно поэтому весь XVIII век в физике господствовала, хоть и не безраздельно, корпускулярная теория. Уж этот–то факт она объясняла проще простого: а как же еще могли световые частицы лететь сквозь пустоту, если не прямолинейно?!

Но эта же прямолетность частиц света мешала корпускулярной теории описать другое явление: способность света огибать препятствия — дифракцию. Из–за нее у теней не бывает абсолютно резких границ. Если свет — волны, тогда все понятно: волны и должны делать границы теней расплывчатыми, ибо могут заходить за край предмета. А прямолетящим частицам делать это не дано. Дифракция стала доводом против корпускулярной теории и помогла восторжествовать волновой.

А было еще явление интерференции. Сам Ньютон демонстрировал его воочию: «Если наложить выпуклую пластинку на плоскую, то… в однородном свете образуются светлые и темные кольца». Он растолковывал, что эти кольца — результат наложения «пропущенного и отраженного света». Но трудно было объяснить, как могла возникнуть темнота там, где встречались — накладывались друг на друга — два световых луча, если это были потоки корпускул? Освещенность должна была бы только усилиться.

А для волновой теории это явление интерференции не представляло никаких затруднений. Волны могли взаимно усиливаться, встречаясь своими горбами, и могли взаимно погашаться, когда горб одной приходился на впадину другой. Чередование светлых и темных колец естественно истолковывалось, как волновая картина.

К слову сказать, для волновой картины было совершенно необязательно знать, что именно «волнуется», порождая свет, воображаемый ли эфир или более реальные силы электромагнитного поля. В нашей хорошей истории еще появятся и другие волны, тоже умеющие взаимно интерферировать. И хочется привести еще один вариант все той же платоновской мысли, высказанный современным физиком — другом и соавтором Льва Ландау начала 30–х годов — Рудольфом Пайерлсом:

«…Чтобы понять, как происходит интерференция, не нужно интересоваться природой волны. Достаточно знать только, что существует некая величина, которая колеблется…»

Колебания разного знака — колебания в противоположные стороны — могут гасить друг друга, а колебания одного знака — усиливаться. Вот и весь механизм интерференции. Он стал сильнейшей опорой волновой теории света. Тем более что удалось волновым построением безупречно объяснить и прямолинейность распространения световых лучей.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Вероятностный мир"

Книги похожие на "Вероятностный мир" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Даниил Данин

Даниил Данин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Даниил Данин - Вероятностный мир"

Отзывы читателей о книге "Вероятностный мир", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.