» » » Брайан Грин - Ткань космоса: Пространство, время и текстура реальности


Авторские права

Брайан Грин - Ткань космоса: Пространство, время и текстура реальности

Здесь можно скачать бесплатно "Брайан Грин - Ткань космоса: Пространство, время и текстура реальности" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Книжный дом «ЛИБРОКОМ», год 2009. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Брайан Грин - Ткань космоса: Пространство, время и текстура реальности
Рейтинг:
Название:
Ткань космоса: Пространство, время и текстура реальности
Автор:
Издательство:
Книжный дом «ЛИБРОКОМ»
Жанр:
Год:
2009
ISBN:
978-5-397-00001-7
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Ткань космоса: Пространство, время и текстура реальности"

Описание и краткое содержание "Ткань космоса: Пространство, время и текстура реальности" читать бесплатно онлайн.



Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.

В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?

Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.

Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.






В следующих двух разделах мы опишем некоторые из наиболее заметных и многообещающих попыток это сделать. Если вы захотите сразу перейти к последнему разделу, посвящённому стреле времени в квантовой механике, то отметим, что ответ таков. Множество хитроумных работ по проблеме квантовых измерений привело к значительным успехам, но принимаемое большинством решение проблемы, по-видимому, всё ещё находится вне пределов нашей досягаемости. Многие рассматривают это как самый важный пробел в формулировке квантовых законов.

Реальность и проблема квантового измерения

За время существования квантовой теории поступило множество предложений для решения проблемы квантового измерения. Ирония заключается в том, что, хотя они влекли за собой различные концепции реальности (некоторые — радикально различные), когда дело касалось предсказаний того, что исследователь будет измерять почти во всех экспериментах, все они были в согласии друг с другом и каждое работало подобно заклинанию. Каждое предложение показывало один и тот же спектакль, хотя, если вы посмотрите за кулисы, то увидите, что их способы действия существенно отличаются.

Когда речь идёт о развлечении, вы обычно не хотите знать, что происходит за кулисами; вы вполне удовлетворяетесь тем, что обращаете внимание исключительно на результат. Но когда речь идёт о понимании Вселенной, имеется непреодолимое желание отдёрнуть все шторы, открыть все двери и полностью обнажить глубинные внутренние механизмы реальности. Бор считал это побуждение безосновательным и вводящим в заблуждение. Для него реальность есть её представление. Как в монологе Сполдинга Грея[142], голые измерения экспериментатора и являются всем спектаклем. Ничего другого нет. Согласно Бору, «за кулисами» ничего нет. Идея попытаться проанализировать, как, когда и почему квантовая волновая функция отбрасывает все возможности, кроме одной, и даёт одно определённое число на измерительном приборе, — ошибочная идея. Измеренное число само по себе является всем, что заслуживает внимания.

Этот взгляд господствовал в течение десятилетий. Однако его успокаивающее действие на ум, пытающийся, несмотря ни на что, понять квантовую теорию, никак не способствует ощущению, что превосходная предсказательная сила квантовой механики означает, что это и есть проход в скрытую реальность, лежащую в основе нашей Вселенной. Успокаивающее действие этого подхода не может помочь идти дальше и понять, как квантовая механика связана с повседневным опытом — как она перекидывает мост через пропасть между волновой функцией и наблюдением, и какая скрытая реальность лежит в основе наблюдений. Многие исследователи приняли этот вызов; ниже приводятся некоторые разработанные ими подходы.

Один подход, исторические корни которого восходят к Гейзенбергу, заключается в отказе от взгляда на волновую функцию как на объективное свойство квантовой реальности и, вместо этого, во взгляде на неё только как на отражение наших знаний о реальности. Перед проведением эксперимента мы не знаем, где находится электрон, и, как предполагает этот взгляд, наше неведение относительно его расположения отражается электронной волновой функцией, описывающей электрон как находящийся, возможно, в ряде различных мест. Однако в момент, когда мы измеряем его положение, наше знание о том, где он находится, внезапно изменяется: теперь мы знаем его положение, в принципе, с абсолютной точностью. (В соответствии с принципом неопределённости, если мы знаем его положение, мы неизбежно оказываемся в неведении относительно его скорости, но это не является предметом текущего обсуждения.) Это резкое изменение наших знаний, в соответствии с данным взглядом, отражается в резком изменении электронной волновой функции: она внезапно коллапсирует и принимает форму резкого пика, как на рис. 4.7, фиксируя наше точное знание положения электрона. В таком подходе резкий коллапс волновой функции совершенно неудивителен: он есть не что иное, как резкое изменение в знании, которое мы все ощущаем, когда узнаём что-либо новое.

Второй подход, предложенный в 1957 г. студентом Джона Уилера Хью Эвереттом, вообще отрицает, что волновая функция коллапсирует. Вместо этого любой и каждый потенциальный результат, включённый в волновую функцию, реализуется; однако происходит это в его собственной отдельной Вселенной. В этом подходе, известном как многомировая интерпретация, понятие «Вселенная» расширяется, чтобы включить бесчисленные «параллельные вселенные» — бесчисленные версии нашей Вселенной, — так что всё, что может произойти в соответствии с предсказаниям квантовой механики, даже с ничтожной вероятностью, действительно происходит, по меньшей мере в одной копии. Если волновая функция говорит, что электрон может быть здесь, там и где-нибудь далеко, тогда в одной вселенной копия вас самих найдёт его здесь; в другой вселенной другая ваша копия найдёт его там; а в третьей вселенной ещё одна ваша копия найдёт электрон очень далеко. Последовательность наблюдений, которую каждый из нас делает каждую секунду, таким образом, отражает реальность, имеющую место только в одной части этой чудовищной, бесконечной сети вселенных, каждая из которых населена копиями вас, меня и любого другого, кто ещё живёт во вселенной, в которой некоторое наблюдение дало определённый результат. В одной такой вселенной вы сейчас читаете эти слова, в другой вы прервались, чтобы походить по Интернету, ещё в другой вы с волнением дожидаетесь, когда поднимется занавес перед вашим дебютом на Бродвее. Это похоже на то, как если бы существовал не единственный блок пространства-времени, изображённый на рис. 5.1, а бесконечное количество, среди которых каждый реализует одну возможную последовательность событий. В многомировой интерпретации, следовательно, ни один потенциальный результат просто не остаётся потенциальным. Волновые функции не коллапсируют. Каждый потенциальный результат проявляется в одной из параллельных вселенных.

Третье предложение, разработанное в 1950-е гг. Дэвидом Бомом, — тем самым физиком, с которым мы сталкивались в главе 4, когда обсуждали парадокс Эйнштейна–Подольского–Розена, — использует совершенно другой подход.{143} Бом утверждал, что частицы, такие как электроны, обладают определёнными положениями и определёнными скоростями, точно как в классической физике и точно так, как надеялся Эйнштейн. Но, в соответствии с принципом неопределённости, эти свойства скрыты от взгляда; они являются примерами скрытых переменных, упоминавшихся в главе 4. Вы не можете определить обе переменные одновременно. По Бому, такая неопределённость представляет предел того, что мы можем знать, но ничего не предполагает о действительных атрибутах самих частиц. Его подход не противоречит результатам Белла, поскольку, как мы обсуждали в конце главы 4, обладание определёнными свойствами, запрещёнными принципом неопределённости, не исключено; исключена только локальность, а подход Бома нелокален.{144} Бом представил, что волновая функция частицы является другим, отдельным элементом реальности, таким, который существует в дополнение к самой частице. Нет частиц или волн, как полагала философия дополнительности Бора; в соответствии с Бомом, есть частицы и волны. Более того, Бом постулировал, что волновая функция частицы взаимодействует с самой частицей — она «направляет» частицу или «толкает» её — таким способом, что это определяет её последующее движение. В то время как этот подход полностью согласуется с правильными предсказаниями стандартной квантовой механики, Бом нашёл, что изменения волновой функции в одном месте могут немедленно сказаться на удалённой частице, что явно обнаруживает нелокальность его подхода. В эксперименте с двумя щелями, например, каждая частица проходит через одну щель или через другую, тогда как их волновая функция проходит через обе щели и допускает интерференцию. Поскольку волновая функция управляет движением частицы, то не столь уж и удивительно, что, как показывают уравнения, частица охотнее окажется там, где величина волновой функции велика, и неохотно там, где мала, объясняя данные на рис. 4.4. В подходе Бома нет отдельной стадии коллапса волновой функции, поскольку, если вы измеряете положение частицы и находите её здесь, то это действительно то место, где она была моментом раньше измерения.

Четвёртый подход, разработанный итальянскими физиками Джанкарло Жирарди, Альберто Римини и Туллио Вебером, смело изменяет уравнение Шрёдингера неким хитрым способом, который почти не сказывается на эволюции волновых функций отдельных частиц, но имеет существенное влияние на квантовую эволюцию, когда применяется к «большим» повседневным объектам. Предложенная модификация полагает, что волновые функции в своей основе нестабильны; даже без всякого вмешательства, предположили эти исследователи, рано или поздно каждая волновая функция коллапсирует к пикообразной форме по своему собственному желанию. Жирарди, Римини и Вебер постулировали, что для индивидуальной частицы коллапс волновой функции происходит спонтанно и хаотично, возникая в среднем только раз в каждый миллиард лет или около того.{145} Это настолько редко, что вносит только очень слабое изменение в обычное квантово-механическое описание отдельной частицы, и это хорошо, поскольку квантовая механика описывает микромир с беспрецедентной точностью. Но для больших объектов, таких как экспериментатор и его оборудование, которые имеют миллиарды и миллиарды частиц, вероятность будет настолько большой, что в мельчайшую долю любой заданной секунды постулированный спонтанный коллапс произойдёт по меньшей мере с одной отдельной частицей, заставив сколлапсировать её волновую функцию. И, как объясняют Жирарди, Римини, Вебер и другие, запутанная природа всех индивидуальных волновых функций в большом объекте обеспечивает, что этот коллапс инициирует разновидность квантового эффекта домино, при котором волновые функции всех составляющих частиц тоже коллапсируют. Так как это происходит в крошечную долю секунды, предлагаемая модификация обеспечивает, что большие объекты, по существу, всегда находятся в одной определённой конфигурации: стрелки на измерительных приборах всегда указывают на одну определённую величину; Луна всегда находится в одном определённом положении в небе; коты всегда или мертвы, или живы.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Ткань космоса: Пространство, время и текстура реальности"

Книги похожие на "Ткань космоса: Пространство, время и текстура реальности" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Брайан Грин

Брайан Грин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Брайан Грин - Ткань космоса: Пространство, время и текстура реальности"

Отзывы читателей о книге "Ткань космоса: Пространство, время и текстура реальности", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.