» » » » Александр Богданов - ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ.


Авторские права

Александр Богданов - ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ.

Здесь можно скачать бесплатно "Александр Богданов - ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ." в формате fb2, epub, txt, doc, pdf. Жанр: Философия. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Богданов - ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ.
Рейтинг:
Название:
ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ.
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ."

Описание и краткое содержание "ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ." читать бесплатно онлайн.








Нагревшиеся молекулы воды своими усилившимися ударами передают избыток своей энергии движения пограничным молекулам льда. Избыток этот парализуется активностями сцепления льда, пока не уравняется с ними; а тогда получается полная дезингрессия, которая, как мы знаем, вызывает разрыв связи: поверхностная частица льда отрывается, переходит в массу жидкой воды. Вся избыточная тепловая энергия, приобретенная частицею до того момента, ушла на борьбу с активностями сцепления, на то, чтобы парализовать их; поэтому кинетическая энергия самой частицы оказывается не больше, чем была, и попрежнему измеряется температурой 0°. То же происходит и со следующими частицами льда. Таким образом, при нагревании общей массы воды, в пограничной со льдом области поддерживается прежний уровень 0°, противодействуя этому нагреванию, пока не исчезнет весь лед.

Если дело идет не о нагревании, а о повышающемся давлении, то это означает, что кинетическая энергия частиц окружающей среды в среднем для каждой частицы не увеличивается, но увеличивается число их ударов, действующих на пограничную область данной системы. И здесь, от частиц к частицам прибавляющиеся активности давления передаются внутрь ее. Они увеличивают частоту столкновений между частицами, стремясь, тем самым уменьшить размах их движений. И опять–таки, эти вливающиеся активности способны кон'югироваться и вступать в дезингрессию со сцеплением молекул льда; при дезингрессии они, как и в том случае, их отрывают и присоединяют к жидкости, а так как об'ем воды меньше, чем об'ем льда, то давление тем самым уменьшается.

Но, как уже упоминалось, вода — исключение. Если взять другую подобную систему, напр., «твердая ртуть — жидкая ртуть», то наблюдается прямо противоположное. Добавочные активности давления вступают в дезингрессию не со сцеплением частиц твердого тела системы, а с активностями, противодействующими сцеплению в жидкости. Давление уменьшает амплитуду (размах) движения частиц жидкости, так что эта амплитуда становится меньше расстояния между частицами, и они колеблются уже не заходя друг за друга, не перемешиваясь свободно, а удерживаясь около одного среднего положения: так именно движутся частицы твердого тела. Происходит замерзание некоторой доли жидкости; при этом об'ем ее, однако, уменьшается, что, как в предыдущем случае таянье льда, уменьшает давление.

Почему же активности одного рода — сила давления — парализуют, путем дезингрессии, в двух разных случаях не одинаковые, а прямо противоположные активности, как бы выбирая те, которые надо по закону Ле–Шателье? — Дело именно в выборе и есть, только не в сознательном, разумеется, а в стихийном подборе.

Молекулярные движения научная теория представляет в виде бесчисленных и разнообразно направленных «безконечно малых» активностей. Если в систему вступают извне новые такие активности, то, очевидно, следует принять всевозможные их сочетания с прежними, всевозможные элементарные их столкновения, их кон'югации, дезингрессии. Но из этих сочетаний одни будут устойчивы, другие неустойчивы; первые будут удерживаться, вторые — устраняться подбором.

Так, в системе «вода–лед» активности внешнего давления должны вступать в дезингрессии частью с движением молекул жидкости, переводя их в твердое состояние, частью со сцеплением молекул льда, расплавляя его. Но так как лед занимает больше об'ема, чем вода, из которой он получился, то в случаях первого рода от этого давление будет возрастать, в случаях же второго рода оно будет уменьшаться. Спрашивается, какие их этих изменений окажутся устойчивее?

Ответ зависит от строения системы, в которой эти процессы происходят; пока оно неизвестно, не исключена ни та, ни другая возможность. Но надо вспомнить, что такие же точно процессы шли в системе и раньше, до вступления новых активностей: отдельные частицы воды переходили в лед, увеличивая внутреннее давление, отдельные частицы льда — в воду, уменьшая давление. Если бы те или другие из этих изменений были более устойчивыми, то вся система отнюдь не являлась бы системою равновесия, ее структура непрерывно преобразовывалась бы, в первом случае в одну сторону, во втором — в другую. Этого не было: те изменения, которые переходили известную границу, немедленно оказывались менее устойчивыми и устранялись подбором. Структура систем равновесия, для современного научного мышления, тем и характеризуется, что они заключают в себе противоположные процессы, взаимно нейтрализующиеся на некотором уровне. Дело представляют таким образом, что на этом уровне напряжения противоположно направленных активностей равны; когда же один из двух процессов, усиливаясь, поднимается над этим уровнем, то напряжение соответственных активностей становится более значительным, и поток их направляется в обратную сторону, как вода, поднявшись выше своего среднего уровня, падает вниз. Так поддерживается равновесие, а с ним устойчивость системы, в обычных условиях.

Теперь можно судить заранее о том, что получится, когда вступающие извне активности давления в различных кон'югациях и дезингрессиях обусловливают превращение некоторых частиц воды в лед, некоторых частиц льда в воду. Изменения первого рода, еще увеличивая давление, создают новую разность напряжений, которая направляет поток активностей в обратную сторону; следовательно, эти изменения неустойчивы, подбором устраняются. Изменения второго рода, уменьшая давление, которое уже повышено над средним уровнем, уменьшают и разность напряжений, и обратного потока активностей не вызывают; а потому они устойчивее первых, подбор для них благоприятнее. Результат именно тот, какой соответствует закону Ле–Шателье: обнаруживается процесс, уменьшающий эффект внешнего воздействия, как бы противодействующий ему.

В примере с твердой и жидкой ртутью, напротив, переход твердых частиц в жидкое повышает давление, переход жидких в твердые — понижает. Поэтому при внешнем давлении процессы первого рода, как увеличивающие разность напряжений, будут менее устойчивы, процессы же второго рода, как ее уменьшающие — более устойчивы. Общий результат подбора — обратный предыдущему, опять в согласии с законом Ле–Шателье. И то же, очевидно, должно иметь место для всякой системы равновесия какие бы активности ее не составляли, какие бы противоположные процессы в ней ни нейтрализовали друг друга. Напр., в нашем организме постоянно происходят процессы освобождающие и поглощающие теплоту, в приблизительном равновесии по отношению к данной среде; если она изменяется в сторону нагревания — усиливаются процессы, поглощающие теплоту, если в сторону охлаждения, то противоположные — теплообразующие.

Но все это относится именно к системам равновесия. С неуравновешенными системами дело обстоит совершенно иначе. В них если и идут изменения одновременно в двух противоположных направлениях, то одна из двух групп их устойчивее, а потому целое преобразовывается шаг за шагом в ее сторону. Какие же результаты получаются при внешнем воздействии на такого рода комплексы?

Иллюстрацией может послужить смесь водорода и кислорода, называемая также гремучим газом. При обыкновенной температуре она кажется вполне уравновешенной системой, никакими нынешними методами нельзя непосредственно обнаружить в ней происходящего химического изменения. На деле оно, однако, происходит: смесь превращается в водяной пар, т. — е. процессы соединения водорода с кислородом преобладают над обратными. Но реакция здесь идет так медленно, что нужны, по приблизительному расчету, основанному на наблюдении хода ее при высоких температурах и формуле изменения скорости реакций Вант–Гоффа, сотни миллиардов лет, чтобы она завершилась. Это — система ложного равновесия, как ее обозначают; она не уравновешена химически, а также в смысле температуры, потому что при реакции выделяется теплота, и смесь должна, хотя неуловимо, самонагреваться.

Пусть к ней прилагается внешнее воздействие — нагревание. Внутренние изменения комплекса в эту сторону уже были устойчивее противоположных, — то же относится и ко вновь присоединяющимся. Не только не возникает противодействия им, но ход соединения водорода с кислородом ускоряется, обусловливая еще прибавочное нагревание смеси, — как раз обратное тому, что бывает с системами равновесия. При температурах, близких к обычным, это, опять–таки, ничтожная, неуловимая величина: но чем выше температуры, тем более она возрастает; на уровне около 600° С. она становится так велика, что ускоряет процесс до степени взрыва, в свою очередь дающего нагревание в несколько тысяч градусов[38]. Этот взрыв, однако, не есть нечто новое тектологически, — он продолжение того процесса, который шел раньше; изменен только его темп.

Таково «ложное равновесие». Под этими словами подразумевается, следовательно, два факта: во–1), равновесие непрерывно нарушается в определенную сторону, комплекс находится в процессе преобразования; во–2), мы непосредственно не замечаем этого благодаря несовершенству наших органов восприятия и методов наблюдения. Когда же мы говорим об «истинном равновесии», то и это отнюдь не означает точного, полного равновесия, но только — тенденцию к нему в двухсторонних колебаниях. Если кристалл соли находится в ее насыщенном растворе, то это — «истинное равновесие», совершенно так же, как вода и лед при 0°. Между растворением частиц кристалла и осаждением других из раствора, между таянием льда и замерзанием воды нет точного равенства во всякий данный момент; но если сейчас перевешивает первый процесс, и уклонение от уровня получается в одну сторону, то в следующий момент преобладание перейдет ко второму, и колебание направится в другую сторону, и т. д.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ."

Книги похожие на "ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Богданов

Александр Богданов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Богданов - ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ."

Отзывы читателей о книге "ОЧЕРКИ ОРГАНИЗАЦИОННОЙ НАУКИ.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.