» » » Фрэнк Солтис - Основы AS/400


Авторские права

Фрэнк Солтис - Основы AS/400

Здесь можно скачать бесплатно "Фрэнк Солтис - Основы AS/400" в формате fb2, epub, txt, doc, pdf. Жанр: Программное обеспечение, издательство Русская Редакция, год 1998. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Фрэнк Солтис - Основы AS/400
Рейтинг:
Название:
Основы AS/400
Издательство:
Русская Редакция
Год:
1998
ISBN:
5-7502-0038-8
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Основы AS/400"

Описание и краткое содержание "Основы AS/400" читать бесплатно онлайн.



В данном переводе второго издания книги "Основы AS/400" описаны практически все аспекты работы этой вычислительной системы: от используемых в ней новейших аппаратных и программных технологий до истории создания. Издание состоит из предисловия, введения, 12 глав, приложения и предметного указателя; содержит иллюстрации. Автор книги Фрэнк Солтис, сделавший академическую карьеру в области информатики, начиная с замысла System/38, является одним из ведущих специалистов по идеологии и архитектуре AS/400. Книга предназначена для широкого круга читателей: бизнесменов, менеджеров, руководителей подразделений, желающих понять, чем система или сервер AS/400e могут быть выгодны их бизнесу. Тем не менее, издание будет полезно и специалистам, которые хотят разобраться в мельчайших деталях. На русском языке публикуется впервые.






К тому времени мы уже знали, как работать с существующими командами IMPI и как повысить производительность путем перевода наиболее часто используемых команд в другие, более быстрые форматы. Изменение кодов операций означает, что команда, на предыдущей версии оборудования вызывавшая, скажем, загрузку, на новой версии служит для передачи управления. В любой «нормальной» системе такая замена привела бы к хаосу, но не в System/38 — ведь она не зависит от технологии.

При модернизации оборудования системы устанавливалась и новая версия транслятора. У каждой программы в системе был свой заголовок объекта, который, кроме всего прочего, показывал, какой уровень транслятора использовался для создания программы. При первом исполнении программы система проверяла заголовок и при обнаружении старой версии обрабатывала связанный с объектом шаблон программы новым транслятором, сохраняя новый код IMPI в объекте. После этого программа выполнялась. Ретрансляция производится лишь однажды — при следующих вызовах программы используется новый код.

Это работало блестяще, но... начались претензии заказчиков: «Я только что °—° установил систему, и мне кажется, что прикладные программы стали работать медленнее». Это и понятно: ретрансляция впервые запущенного приложения приводила к замедлению работы. Как Вы думаете, что мы отвечали? Конечно же — «Попробуйте еще раз». Тот же метод скрытой ретрансляции программ применялся при переходе на RISC-процессоры. Разница была лишь в том, что заказчиков заранее предупреждали, что приложения будут работать, только если не удалена адаптируемость. Что же изменилось со времен System/38?

AS/400 должна была привлечь и пользователей System/36, и System/38. Между тем вторые привыкли к большим объемам памяти и жестких дисков, так же как и пользователи System/36 — обходиться малым. Поэтому размеры новых программ последних пугали, и казались им чересчур большими.

Программы для AS/400 действительно впечатляли — ведь каждая хранилась в двух копиях: в инкапсулированной форме и в форме шаблона. Для экономии пространства на диске заказчики могли удалить шаблоны. Это называлось удалением адаптируемости программы (Delete Program Observability), так как после программу уже нельзя было материализовать.

В результате те, кто удалил адаптируемость некоторых или всех своих программ, должны были вернуться к исходным текстам на ЯВУ и заново откомпилировать их, прежде чем переносить на RISC-процессоры. И хотя на AS/400 это все равно проще, чем на большинстве других систем, все же перенос не выполнялся автоматически, как при наличии программного шаблона.

Внутри шаблона программы

Чтобы выяснить, что там происходит, возьмем в качестве примера шаблон программы ОРМ, хотя он и не поддерживается на RISC-системах. Я выбрал ОРМ по двум причинам. Во-первых, это дает возможность рассмотреть еще несколько интересных концепций, лежащих в основе оригинального набора команд MI. Во-вторых, некоторые детали шаблона программы ILE не опубликованы. И поэтому прежде чем заняться шаблоном программы ОРМ, рассмотрим те изменения, которые были внесены в программную модель ILE.

При создании компиляторов для программной модели ILE, в MI были добавлены новые команды. Некоторые из них имеют структуру близкую к W-коду, используемому компиляторами ILE, однако не совпадают с его командами в точности. Права на W-код принадлежат лаборатории IBM в Торонто (Toronto), Канада, которая пока не желает лицензировать интерфейс W-кода кому-либо за пределами IBM, опасаясь, что другие смогут разрабатывать и продавать компиляторы для AS/400. Мы решили определить команды! MI, которые похожи, но не в точности совпадают с W-кодом, чтобы не связываться с Торонто, если там когда-либо будет принято решение открыть этот интерфейс другим фирмам.

Наилучший целевой компьютер для компиляторов ILE — стековая машина, поэтому MI был расширен для поддержки стеков. Стек — набор данных, хранящихся последовательно. Первый помещенный в стек элемент называется его дном, последний — вершиной. Для работы со стеком используются команды без явного указания операндов, которые определяются путем извлечения из стека двух верхних элементов. В противоположность этому, команды ОРМ имеют два операнда, заданных непосредственно в команде. Для стековой машины операция задается после операндов. Такая форма записи называется постфиксной или обратной польской в честь математика Лукашевича (J. Lukasiewicz), исследовавшего ее свойства[ 37 ].

Интересно, что архитектура, разработанная в 1972 году, имела аналогичную поддержку стека. В то время многие полагали, что блочно-структурированные языки, такие как PL/1, станут очень популярными. Но они так и не вытеснили RPG и Cobol, так что стек был временно отвергнут. Теперь, с появлением таких языков как С, мы снова вернулись к нему.

Рисунок 4.7 Команды и ODT


Шаблон программы состоит из нескольких частей. Шаблон программы ОРМ содержит заголовок, последовательность команд MI, пользовательские данные и структуру под названием таблица определения объектов ODT (object definition table). Команды и ODT представлены на рисунке 4.7. Последовательность команд на рисунке содержит пример команды MI. Использована классическая команда OPM с тремя операндами —арифметическое сложение. Она состоит из кода операции, за которым следуют три значения, используемые для поиска трех операндов. Каждое из них является индексом в ODT. Показанная на рисунке команда запрашивает сложение операнда 6 с операндом 2 и помещение суммы в операнд 3.

ODT состоит из двух компонентов. Первая — ODV (ODT Direction Vector) — содержит по одному элементу для каждого операнда программы. Все элементы имеют одинаковую длину, так что значение из последовательности команд может использоваться как индекс в ODV. Элементы ODV описывают операнды. В нашем примере, операнды 6 и 3 — это двоичные числа длиной 2 байта, а операнд 2 — константа. Константы и другие типы операндов могут иметь переменную длину, что задает необходимость второго компонента ODT. OES (ODT Entry String) содержит операнды переменной длины, не умещающиеся в ODV. Содержимое поля ODV указывает на начало цепочки в OES. В нашем примере операнд 2 представляет собой константу 1253.

Пример иллюстрирует несколько характеристик команд MI модели ОРМ. Во-первых — это команда арифметического сложения. Это не команда двоичного или десятичного сложения, или сложения с плавающей запятой; она универсальна. Формат операндов команды определяется в ODT. В нашем примере используются двоичные целые операнды, но они могли бы иметь любой числовой формат. За генерацию необходимых преобразований отвечает транслятор.

Во-вторых, из примера видно, что ОРМ MI — неисполняемый интерфейс. Обратите внимание, что ни с операндом 3, ни с операндом 6 не связаны значения. Элемент ODV эквивалентен объявлению переменной. Память для переменной не выделена, так что транслятор обязан завершить компиляцию и назначить переменным регистры или области памяти.

И, наконец, в примере показана обычная вычислительная команда. Команда, работающая с объектом, имела бы аналогичный формат, но в ODT было бы указано, как найти объект (детали адресации объектов будут рассмотрены в главе 5).

Форматы команд MI


Рисунок 4.8 Формат команд MI


На рисунке 4.8 показан формат команд ОРМ MI в потоке команд. Команда состоит из кода операции, необязательного расширения кода операции, а также нуля или более операндов. MI проектировался в расчете на последующие расширения, так что формат команды допускает увеличение числа команд и операндов. Код операции и его расширение представляют собой 16-разрядные поля. Поле операнда, используемое как индекс в ODV, первоначально на System/38 имело длину 16 бит, но затем было расширено до 24 бит. Это означает, что в программе может быть до 16 миллионов (224) разных операндов, и эта цифра может быть увеличена.

Экономия памяти не была слишком важна для шаблона программы. Например, команда арифметического сложения заняла бы 2 байта для кода операции, 2 байта — для расширения кода операции и 9 байтов — для операндов. Получается 13 байтов, и мы еще не учли пространство для операндов в ODT. Не удивительно, что пользователи System/36 были недовольны объемом дискового пространства, занимаемого программами.

Код операции MI

В таблице 4.14 показано назначение битов кода операции MI. Бит 3 задает вычислительный или невычислительный формат команды. Во втором случае функция, которая должна быть выполнена, закодирована в битах 5-15 кода операции. Функция, выполняемая вычислительной командой, задается битами 8-15. В этом случае, как в примере с арифметическим сложением, биты 5-7 содержат дополнительную информацию о команде.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Основы AS/400"

Книги похожие на "Основы AS/400" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Фрэнк Солтис

Фрэнк Солтис - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Фрэнк Солтис - Основы AS/400"

Отзывы читателей о книге "Основы AS/400", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.