» » » » П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии


Авторские права

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии

Здесь можно скачать бесплатно " П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Курс общей астрономии
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Курс общей астрономии"

Описание и краткое содержание "Курс общей астрономии" читать бесплатно онлайн.








§ 115. Астрофизические исследования с воздушных шаров, самолетов и космических аппаратов. Понятие о радиолокационных методах

До начала сороковых годов XX в. астрономы использовали для своих наблюдений почти исключительно визуальную область спектра и прилегающие к ней участки

приблизительно от 3000 до 7000 Е. После окончания второй мировой войны стали быстро развиваться радиоастрономические методы исследования (радиоастрономия). Успехи радиоастрономии показали, как важно вести исследования в новых областях спектра, распространить наблюдения на возможно более широкий диапазон длин волн. Однако земная атмосфера непрозрачна в области l

< 3000 Е и 15 мк <l <1 мм. Следовательно, возникла задача проведения астрономических исследований вне земной атмосферы. В принципе сравнительно просто эта проблема решается для инфракрасного и субмиллиметрового излучения (15 мк <l <<1 мм). Основным веществом, поглощающим инфракрасную радиацию, является водяной пар, концентрация которого быстро уменьшается с высотой. На высотах около 25-30 км земная атмосфера становится прозрачной для инфракрасного излучения. Эти высоты вполне доступны современным воздушным шарам (“баллонам”), грузоподъемность которых достаточна, чтобы нести довольно большой телескоп диаметром до 1 м. Наблюдения с такой высоты имеет смысл проводить и в видимой области спектра, так как атмосферное дрожание здесь уже не будет ограничивать разрешающей силы телескопа. Первый “баллонный” телескоп “Стратоскоп-1” (диаметром в 50 см) был построен в США для фотографирования солнечной грануляции. Другой американский баллонный телескоп “Стратоскоп-2” (диаметром 90 см) запускался с целью исследования инфракрасных спектров планет и звезд. Подобные телескопы управляются в полете с Земли по радио. Телевизионные камеры, установленные на искателе, гиде и в фокусе Кассегрена, позволяют наводить телескоп на объект почти так же уверенно, как и при обычных наземных наблюдениях. В СССР успешно проводились полеты стратосферного солнечного телескопа с целью фотографирования солнечной грануляции. Для инфракрасной астрономии большие перспективы связаны с возможностью установки телескопов на самолетах. Самолетные летающие обсерватории не могут подниматься на такую большую высоту, как баллонные телескопы, однако они имеют ряд преимуществ (управляемый полет, присутствие наблюдателя на борту и т.п.). В ультрафиолетовой и рентгеновской областях спектра земная атмосфера поглощает так сильно, что для их изучения надо поднимать аппаратуру на высоту не менее 100 км над земной поверхностью, а это можно сделать только с помощью ракет и искусственных спутников Земли. Ракеты можно запускать чаще, но зато время их полета ограничено: всего несколько минут. На борту ракет и спутников устанавливаются небольшие телескопы с фотоэлектрическими фотометрами, спектральными аппаратами, приборы для приема рентгеновского излучения. Приборы действуют автоматически по заданной программе, а наблюдательный материал передается по радио, либо, в случае ракет и приземляющихся спутников, может быть получен исследователем по окончании полета. Обычно головка ракеты с научным оборудованием (приборный отсек) отделяется от ракеты (до того, как она входит в плотные слои атмосферы) и опускается на парашюте. Американский искусственный спутник “Ухуру” (“Свобода” на языке суахили; запуск производился в Африке в 1970 г.) был специально сконструирован для получения карты всего неба в рентгеновских лучах (энергии квантов от 2 до 10 кэв). С его помощью было обнаружено 125 рентгеновских источников, из которых более половины ранее не были известны. Другой астрономический спутник “ОАО-3”, или “Коперник” (названный в честь великого польского астронома и запущенный в 1973 г., когда праздновался юбилей Коперника – 500 лет со дня рождения), представляет собой телескоп-рефлектор диаметром 80 см, снабженный ультрафиолетовым спектрометром. С его помощью были получены спектры большого количества звезд в области от 700 до 3000 Е, недоступной наблюдениям с Земли. Автоматическая система фотоэлектрического гидирования при помощи небольших реактивных двигателей ориентации поддерживала при регистрации спектра точность наведения до 0»,1. В настоящее время астрономия и космическая техника подошли вплотную к созданию длительно действующих крупных телескопов, специально сконструированных для работы на орбитах искуственных спутников Земли. Такой телескоп должен иметь систему автоматического наведения и высокоточной ориентации. Для технического обслуживания его будут периодически посещать космонавты. Большое значение для создания подобных космических обсерваторий имеет опыт работы, полученный советскими космонавтами на орбитальных станциях типа “Салют”. Другое важное направление, связанное с прогрессом ракетной техники, – это исследование Солнечной системы автоматическими межпланетными станциями. Советские автоматические станции трижды фотографировали обратную сторону Луны (в 1959, 1965 и 1969 гг.). 3 февраля 1966 г. Советский Союз впервые осуществил мягкую посадку автоматической станции на Луну и передачу изображения непосредственно с ее поверхности (“Луна-9”). 3 апреля 1966 г. впервые был успешно выведен на орбиту искусственный спутник Луны (советская станция “Луна-10”). Широкая программа исследования Луны осуществлялась также американскими учеными с помощью аппаратов типа “Рейнджер” (лунные станции с жесткой посадкой), “Орбитер” (искусственные спутники Луны), “Сервейор” (станции с мягкой посадкой) и “Аполлон” (станции, обеспечивающие высадку астронавтов на Луну). Американская программа ставила целью доставить на Луну человека. Советская программа была нацелена по-иному: исследовать Луну с помощью автоматических станций. Эти станции были двух типов: подвижные “луноходы” (“Луноход-1 и 2”) и станции, обеспечивающие доставку грунта с Луны на Землю (“Луна-16, 20 и 24”). Космические аппараты СССР и США совершили успешные полеты к Венере, Марсу, Меркурию и Юпитеру. Для исследования планет используются автоматические межпланетные станции (АМС) трех различных модификаций: а) пролетные, которые совершают однократное (в некоторых случаях двух– или трехкратное) прохождение вблизи исследуемой планеты, б) орбитальные, т.е. выводимые на орбиту искусственных спутников, и в) спускаемые, т.е. опускающиеся прямо на поверхность планеты и обеспечивающие прямые измерения физико-химических характеристик атмосферы, а иногда и поверхности. Пролетные аппараты – это своего рода разведчики: они получают сравнительно небольшой объем данных. Орбитальные аппараты позволяют обследовать значительную часть планеты, но только дистанционными (оптическими и радиофизическими) методами. Спускаемые аппараты получают весьма детальные данные об атмосфере и поверхности (недоступные пролетным и орбитальным аппаратам), но только в месте посадки. Наиболее оптимальным является сочетание орбитального и спускаемого аппарата, когда их данные взаимно дополняются. Такие сочетания были осуществлены в советских исследованиях Марса и Венеры. В 1974 г. были совершены вывод на орбиту искусственного спутника Марса “Марс-5” и посадка спускаемого аппарата “Марс-6”. В 1975 г. на орбиту искусственных спутников Венеры были выведены два искусственных спутника и совершили посадку два спускаемых аппарата (АМС “Венера-9” и “Венера-10”). Это были первые в мире искусственные спутники Венеры, а спускаемые аппараты впервые в мире передали на Землю изображение поверхности другой планеты. Советские спускаемые аппараты типа “Венера” исследуют атмосферу Венеры начиная с 1967 г. Ввиду исключительной важности этих экспериментов мы опишем их более детально. Главной научной задачей АМС являлось определение основных физических параметров атмосферы планеты (температуры и давления) и ее химического состава. Станции состояли из орбитального отсека и спускаемого аппарата. Общий вид станции “Венера-4” дан на рис. 120. Орбитальный отсек нес спускаемый аппарат, научные приборы для исследований на трассе полета, солнечные батареи, радиокомплекс и устройства, необходимые для коррекции полета, в том числе жидкостный реактивный двигатель. Операция коррекции представляет собой исправление орбиты, которое вводится в определенный момент полета, когда АМС отошла от Земли достаточно далеко и определено, насколько реальная орбита отклонилась от заданной. Советские автоматические станции входили в атмосферу Венеры, в соответствии с программой, на второй космической скорости и по мере снижения тормозились. Когда перегрузки достигали определенной достаточно большой величины, происходило разделение спускаемого аппарата и орбитального отсека. Спускаемый аппарат представлял собой сферу диаметром около 1 м с теплоизоляцией, способной предохранить аппарат от сгорания при торможении. Когда он тормозился до скорости около 300 м/сек, по команде датчика внешнего давления вводились в действие тормозной и основной парашюты, которые уменьшали скорость снижения до нескольких метров в секунду. Одновременно с этим раскрывались антенные системы и включались радиовысотомер и радиопередатчик. Затем шла передача результатов изменений давления, плотности, температуры, химического состава и других данных по мере снижения спускаемого аппарата. Начиная с “Венеры-7” (1970 г.) измерения проводились не только при спуске, но и в течение некоторого времени после посадки на поверхность планеты (рис. 121). Помимо измерений на спускаемых; аппаратах, проводившихся в нижних слоях атмосферы Венеры, важные результаты были получены с помощью научной аппаратуры, установленной на орбитальных отсеках. Эта аппаратура позволила получить данные о строении облачного слоя, надоблачной атмосферы, о полях и частицах в окрестностях планеты. На Марс посадить космический аппарат еще труднее, чем на Венеру, из-за малой плотности его атмосферы. Мягкая посадка на Марс была впервые осуществлена советским спускаемым аппаратом “Марс-3” (2 декабря 1971 г.), который отделился от автоматической станции, ставшей искусственным спутников планеты. До недавнего времени общине свойством всех астрономических методов был их пассивный характер: мы только наблюдали явления, регистрировали то, что природа сама нам показывала. Этим астрономия принципиально отличалась от физики, в основе которой лежит эксперимент – активный метод исследования. Экспериментатор не просто наблюдает явления природы, а вторгается в них, меняет условия опыта и, конечно, имеет больше шансов понять сущность явлений, чем если бы он ограничился пассивным наблюдением. Полеты космических кораблей постепенно превращают астрономию в экспериментальную науку. Со временем в исследовании планет и межпланетного пространства роль эксперимента в астрономии будет, по-видимому, быстро возрастать. Заметим, что полеты АМС являются не единственным средством экспериментального исследования Солнечной системы. Чисто экспериментальным методом является и радиолокация небесных тел. В направлении космического тела посылается мощный импульс радиоволн и принимается отраженный импульс. По запаздыванию отраженного импульса можно определить расстояние, по величине – коэффициент отражения. Форма импульса позволяет судить о размерах тела и степени гладкости его поверхности. Вращение исследуемого тела вызывает расширение импульса по частоте вследствие эффекта Доплера, и скорость вращения может быть определена по величине размытия. Могут исследоваться отражения от отдельных деталей на поверхности планет, облачного слоя, ионосферы и т.д. Конечно, такой способ годится только для объектов не очень удаленных; по-видимому, радиолокации никогда не удастся выйти за пределы Солнечной системы. Что же касается изучения самой Солнечной системы, то в этом радиолокация добилась уже больших успехов, а возможности ее использованы далеко не полностью. В качестве важнейших достижений радиолокационного метода укажем на измерение расстояния до Венеры, которое привело к значительному уточнению астрономической единицы, а также на определение периода вращения и радиуса этой планеты (см § 135). СОЛНЦЕ Солнце – типичная звезда, свойства которой изучены подробнее и лучше, чем других звезд, благодаря ее исключительной близости к Земле. В этой главе мы не только кратко рассмотрим имеющуюся информацию о Солнце, но и несколько подробнее те его свойства, которые характерны для всех звезд, что окажется весьма полезным при изучении их физической природы. § 116. Общие сведения о Солнце Солнце представляется кругом с резко очерченным краем (лимбом). Видимый радиус Солнца несколько меняется в течение года вследствие изменения расстояния Земли от Солнца, вызванного эллиптичностью земной орбиты. Когда Земля в перигелии (начало января) видимый диаметр Солнца составляет 32’35”, а в афелии (начало июля) –33'31». На среднем расстоянии от Земли (1 а.е.) видимый радиус Солнца составляет 960», что соответствует линейному радиусу Объем Солнца а его масса что дает среднюю плотность его вещества Ускорение силы тяжести на поверхности Солнца Наблюдения отдельных деталей на солнечном диске, а также измерения смещений спектральных линий в различных его точках говорят о движении солнечного вещества вокруг одного из солнечных диаметров, называемого осью вращения Солнца. Плоскость, проходящая через центр Солнца и перпендикулярная к оси вращения, называется плоскостью солнечного экватора. Она образует с плоскостью эклиптики угол в 7° 15' и пересекает поверхность Солнца по экватору. Угол между плоскостью экватора и радиусом, проведенным из центра Солнца в данную точку на его поверхности называется гелиографической широтой. Вращение Солнца обладает важной особенностью: его угловая скорость w убывает по мере удаления от экватора и приближения к полюсам (рис. 122), так что в среднем w = 14°,4 – 2°,7 sin2В, где В – гелиографическая широта. В этой формуле угловая скорость w измеряется углом поворота за сутки. Таким образом, различные зоны Солнца вращаются вокруг оси с различными периодами. Для точек экватора сидерический период составляет 25 суток, а вблизи полюсов он достигает 30 суток. Вследствие движения Земли вокруг Солнца его вращение представляется земному наблюдателю несколько замедленным: период вращения на экваторе составляет 27 суток, а у полюсов – 32 суток (синодический период вращения). Поскольку Солнце вращается не как твердое тело, систему гелиографических координат нельзя жестко связать со всеми точками его поверхности. Условно гелиографические меридианы жестко связываются с точками, имеющими гелиографические широты В = ±16°. Для них сидерический период обращения составляет 25,38 суток, а синодический равен 27,28 суток. За начальный гелиографический меридиан принят тот, который 1 января 1854 г. в 0h по всемирному времени проходил через точку пересечения солнечного экватора с эклиптикой. § 117. Спектр и химический состав Солнца В видимой области излучение Солнца имеет непрерывный спектр, на фоне которого заметно несколько десятков тысяч темных линий поглощения (рис. 123), называемых фраунгоферовыми по имени австрийского физика Фраунгофера, впервые описавшего эти линии в 1814 г. Наибольшей интенсивности непрерывный спектр достигает в синезеленой части спектра, у длин волн 4300-5000 Е (см рис. 91). В обе стороны от максимума интенсивность солнечного излучения убывает. Солнечный спектр далеко простирается в невидимые коротковолновую и длинноволновую области. Результаты внеатмосферных наблюдений спектра Солнца, полученные с ракет и искусственных спутников показывают, что до длин волн около 2000 Е характер солнечного спектра такой же, как и в видимой области. Однако в более коротковолновой области он резко меняется: интенсивность непрерывного спектра быстро падает, г темные фраунгоферовы линии сменяются яркими эмиссионными (рис. 124). Инфракрасная область солнечного спектра до 15 мк частично поглощается при прохождении сквозь земную атмосферу (рис. 125). Здесь расположены полосы молекулярного поглощения, принадлежащие в основном водяным парам, кислороду и углекислому газу. С Земли видны лишь некоторые участки солнечного спектра между этими полосами. Для длин волн, больших 15 мк, поглощение становится полным, и спектр Солнца доступен наблюдениям только с больших высот или внеатмосферными методами. Поглощение спектра Солнца молекулами воздуха продолжает оставаться сильным вплоть до области радиоволн длиной около 1 см, для которых земная атмосфера снова становится прозрачной. При этом обнаруживается, что в радиодиапазоне интенсивность солнечного спектра значительно больше, чем должна быть у тела с температурой 6000°. Убывание интенсивности радиоспектра Солнца с ростом длины волны в диапазоне метровых волн происходит так же, как и у абсолютно черного тела, имеющего температуру в миллион градусов. Другой важной особенностью радиоизлучения Солнца является его переменность, увеличивающаяся с ростом длины волны. Этим радиодиапазон существенно отличается от видимой области спектра, интенсивность которой исключительно постоянна. Подобной же переменностью обладает и рентгеновское излучение Солнца. Важнейшей особенностью солнечного спектра от длины волны около 1600 Е до инфракрасного диапазона является наличие темных фраунгоферовых линий поглощения. По длинам волн они в точности соответствуют линиям испускания разреженного светящегося газа. Появление их в поглощении в спектре солнечной атмосферы обусловлено значительно большей ее непрозрачностью к излучению в этих линиях, чем в соседнем непрерывном спектре. Тем самым в них мы наблюдаем излучение, исходящее от более наружных, а следовательно, и более холодных слоев. Дополнительное поглощение вызвано соответствующими атомами, которые возбуждаются за счет поглощенных квантов. Возбужденные атомы тут же переизлучают поглощенную энергию, причем одинаково по всем направлениям. Этот процесс называется атомным рассеянием. Он наиболее важен при образовании фраунгоферовых линий. Поэтому по их интенсивности можно судить о количестве рассеивающих атомов в атмосфере. Самая сильная линия солнечного спектра находится в далекой ультрафиолетовой области. Это – резонансная линия водорода La (Лайман-альфа) с длиной волны 1216 Е (рис. 124). В видимой области наиболее интенсивны резонансные линии H и К ионизованного кальция (см. рис. 123). После них по интенсивности идут первые линии бальмеровской серии водорода Нa , Hb , Нg , затем резонансные линии натрия D1 и D2 , линии магния, железа, титана и других элементов (см. рис. 123). Остальные многочисленные линии отождествляются со спектрами примерно 70 известных химических элементов из таблицы Д.И. Менделеева и хорошо изученных в лаборатории. Присутствие этих линий в спектре Солнца свидетельствует о наличии в солнечной атмосфере соответствующих элементов. Таким путем установлено присутствие на Солнце водорода, гелия, азота, углерода, кислорода, магния, натрия, кальция, железа и многих других элементов. Для количественного определения содержания различных химических элементов на Солнце необходимо применить метод, описанный в § 109. Результаты показывают, что вещество Солнца имеет тот же химический состав, что и другие космические объекты (кроме Земли и других планет), среднее содержание элементов в которых приведено в табл. 3. Преобладающим элементом на Солнце является водород. По числу атомов его примерно в 10 раз больше, чем всех остальных элементов, и на его долю приходится около 70% всей массы Солнца (водород – самый легкий элемент). Следующим по содержанию элементом является гелий – около 29% массы Солнца. На остальные элементы, вместе взятые, приходится чуть больше 1%. В некоторых случаях важно знать содержание элементов, обладающих определенными свойствами. Так, например, общее количество атомов металлов в атмосфере Солнца почти в 10 000 раз меньше, чем атомов водорода. § 118. Солнечная постоянная и ее измерение Для многих задач астрофизики и геофизики важно знать точную величину мощности солнечного излучения. Поток излучения от Солнца принято характеризовать так называемой солнечной постоянной, под которой понимают полное количество солнечной энергии, проходящей за 1 минуту через перпендикулярную к лучам площадку в 1 см2, расположенную на среднем расстоянии Земли от Солнца. Согласно большому количеству измерений, значение солнечной постоянной Q в настоящее время известно с точностью до 1 %: Q = 1,95 кал/см2Ч мин = 1,36 Ч106 эрг/см2Ч сек = 1360 вт/м2. Умножая эту величину на площадь сферы с радиусом в 1 а.е., получим полное количество энергии, излучаемой Солнцем по всем направлениям в единицу времени, т.е. его интегральную светимость, равную 3,8Ч1033 эрг/сек. Единица поверхности Солнца (1 см2 ) излучает 6,28Ч1010 эрг/см2Ч сек. На основании большого числа тщательных измерений можно сказать, что интегральная светимость Солнца отличается исключительным постоянством. Если и существуют слабые колебания солнечной постоянной, то они должны быть заведомо меньше 1 %. У поверхности Земли поток солнечного излучения уменьшается из-за поглощения и рассеяния в земной атмосфере и в среднем составляет 800-900 вт/м2. Измерение солнечной постоянной – очень сложная задача, требующая проведения целой серии тщательных наблюдений с приборами двух различных типов. Приборы первого типа называются пиргелиометрами. Их задача – измерить в абсолютных энергетических единицах полное количество солнечной энергии, падающей за определенное время на площадку известной величины. Однако показание пиргелиометра не дает еще непосредственного значения солнечной постоянной из-за того, что часть излучения Солнца поглощается при прохождении сквозь земную атмосферу. Чтобы учесть это поглощение, одновременно с измерениями на пиргелиометре проводят серию измерений распределения энергии в спектре Солнца на другом приборе – спектроболометре, обладающем одинаковой чувствительностью к лучам различных длин волн. Эти измерения проводятся для нескольких значений зенитных расстояний Солнца, когда его лучи проходят сквозь различную толщину слоя воздуха. Для каждой длины волны можно построить в виде графика зависимость интенсивности солнечного излучения от воздушной массы (рис. 126). Воздушной массой называется отношение оптической толщины слоя воздуха в данном направлении и в направлении на зенит. Из геометрических соображений (рис. 127) видно, что для плоскопараллельных слоев атмосферы воздушная масса пропорциональна секансу зенитного расстояния (sec z). Продолжая (экстраполируя) график, изображенный на рис. 126, до оси ординат (пунктирная линия), получаем интенсивность, какую имело бы излучение, если бы воздушная масса равнялась нулю. Это и есть искомое значение интенсивности, не искаженное поглощением в земной атмосфере. Выполняя эту операцию для всех участков спектра, можно записанное спектроболометром распределение энергии в спектре Солнца (рис. 128) исправить и учесть поглощение, вызванное прохождением сквозь земную атмосферу. В отличие от пиргелиометра, спектроболометр дает значения интенсивности только в относительных единицах. Поэтому описанным способом можно найти лишь отношение наблюдаемого и внеатмосферного значений интенсивности. Площадь, ограничиваемая кривой распределения энергии и осью абсцисс (см. рис. 128), пропорциональна полной энергии, излучаемой во всем спектре. Поэтому отношение площадей, ограниченных внеатмосферным и наблюдаемым распределением энергии, равно тому поправочному множителю, на который необходимо умножить показание пиргелиометра, чтобы получить истинное значение солнечной постоянной. К полученному результату следует прибавить небольшую поправку, учитывающую излучение в областях спектра, полностью поглощаемых земной атмосферой и, следовательно, не регистрируемых болометром. Это излучение расположено в ультрафиолетовой и инфракрасной областях спектра и может быть измерено по наблюдениям с ракет, искусственных спутников или баллонов. Заатмосферные наблюдения позволяют сразу получить истинное значение солнечной постоянной, так что необходимость применения описанной методики в последние годы постепенно отпадает. § 119. Температура внешних слоев Солнца В § 108 было показано, что по интенсивности излучения тела можно судить о температуре внешних его слоев. Рассмотренные методы определения температуры были проиллюстрированы на примере Солнца (см.рис. 91). Проанализируем результаты применения этих методов. Определяемая полным потоком излучения эффективная температура Солнца оказалась равной 5760°, в то время как положение максимума излучения в спектре Солнца соответствует температуре, определенной по закону Вина, около 6750°. Относительное распределение энергии в различных участках спектра позволяет найти цветовые температуры, значение которых весьма сильно меняется даже в пределах одной только видимой области. Так, например, в интервале длин волн 4700-5400 Е цветовая температура составляет 6500°, а рядом в области длин волн 4300-4700 Е – около 8000°. В еще более широких пределах меняется по спектру яркостная температура, которая на участке спектра 1000-2500 Е возрастает от 4500° до 5000°, в зеленых лучах (5500 Е) близка к 6400°, а в радиодиапазоне метровых волн достигает миллиона градусов! Для наглядности все перечисленные результаты сведены в табл. 4. Различие между данными, приведенными в табл. 4, имеет принципиальное значение и приводит к следующим важным выводам: 1. Излучение Солнца отличается от излучения абсолютно черного тела. В противном случае все значения температур, приведенные в табл. 4, были бы одинаковыми. 2. Температура солнечного вещества меняется с глубиной. Действительно, непрозрачность сильно нагретых газов неодинакова для различных длин волн. В ультрафиолетовых лучах поглощение больше, чем в видимых. Вместе с тем сильнее всего такие газы поглощают радиоволны. Поэтому радио-, ультрафиолетовое и видимое излучения соответственно относятся ко все более и более глубоким слоям Солнца. Учитывая наблюдаемую зависимость яркостной температуры от длины волны, получаем, что где-то вблизи видимой поверхности Солнца расположен слой, обладающий минимальной температурой (около 4500°), который можно наблюдать в далеких ультрафиолетовых лучах. Выше и ниже этого слоя температура быстро растет. 3. Из предыдущего следует, что большая часть солнечного вещества должна быть весьма сильно ионизована. Уже при температуре 5-6 тысяч градусов ионизуются атомы многих металлов, а при температуре выше 10-15 тысяч градусов ионизуется наиболее обильный на Солнце элемент – водород. Следовательно, солнечное вещество представляет собой плазму, т.е. газ, большинство атомов которого ионизовано. Лишь в тонком слое вблизи видимого края ионизация слабая и преобладает нейтральный водород. § 120. Внутреннее строение Солнца Одновременно с ростом температуры в более глубоких слоях Солнца должно возрастать давление, определяемое весом всех вышележащих слоев. Следовательно, плотность также будет увеличиваться. В каждой внутренней точке Солнца должно выполняться так называемое условие гидростатического равнове сия, означающее, что разность давлений, испытываемых каким-либо элементарным слоем (например, АВ на рис. 129, а), должна уравновешиваться гравитационным притяжением всех более глубоких слоев. Если давление на верхней границе слоя (A) обозначить через P1 , а на нижней – через Р2 , то равновесие будет иметь место при условии, что P2 ѕ P1 = r gH,(9.1) где r – средняя плотность слоя АВ, H – его толщина, a g – соответствующее значение ускорения силы тяжести. Среднюю плотность r можно положить равной среднему арифметическому от значений плотности r 1 и r 2 на верхней и нижней границах слоя АВ: (9.2) Используя уравнение газового состояния (7.9), получим (9.3) Подставляя это значение в формулу (9.1), имеем (9.4) Выражение имеет размерность длины и обладает важным физическим смыслом: если температура слоя постоянна, а толщина его составляет (9.5) то давление и плотность в пределах этого слоя меняется приблизительно в три раза. Действительно, подставляя (9.5) в (9.4), получаем Р2 = 3P1 .(9.6) Величина Н называется шкалой высоты, так как она показывает, на каком расстоянии происходит заметное изменение плотности. При T = 10 000° (m = 1/2 (ионизованный водород) и g = 2,7Ч104 см/сек2, что примерно соответствует условиям в наружных слоях Солнца, Н = 6Ч107 см, т.е. рост плотности в три раза происходит при продвижении вглубь на расстояние 600 км. Глубже температура растет, и возрастание плотности замедляется. Некоторое представление об условиях в недрах Солнца можно получить, если предположить что вещество в нем распределено равномерно. Очевидно, что свойства такого “однородного” Солнца должны быть близки к реальному случаю в средней точке, на глубине половины радиуса. При равномерном распределении масс плотность всюду равна уже известному нам среднему значению Давление в средней точке равно весу радиального столбика вещества сечением 1 см2 и высотой R¤/2 (см. рис. 129, 6), т.е. (9.7) В средней точке ускорение силы тяжести g, очевидно, равно (9.8) так как в сфере радиусом R¤/2 при однородном распределении масс заключена 1/8 часть массы всего Солнца. Следовательно, давление в средней точке Солнца равно (9.9) Зная давление и плотность, легко найти температуру Т из уравнения газового состояния: (9.10) Таким образом, мы получили следующие значения характеристик физических свойств “однородного Солнца” на глубине, равной половине радиуса R¤/2: r = 1,4 г/см2 (1,3 г/см2), Р = 6,6Ч1014 дин/см2 (6,1Ч1014 дин/см2), T = 2 800 000° (3 400 000°). В скобках приведены те же величины, рассчитанные точными методами, учитывающими неоднородное распределение масс в Солнце. Таким образом, для средней точки предположение о равномерном распределении масс приводит к правдоподобным результатам. В центре Солнца давление, плотность и температура должны быть еще больше. В табл.5 приведена так называемая модель внутреннего строения Солнца, т.е. зависимость его физических свойств от глубины. Таблица 5 Модель внутреннего строения Солнца Расстоя­ние от центраТемпе­ратураДавление Плот­ность R/RQT(°K)P(дин/см2)r(г/см3) 01,5 ·1072,2·1017150 0,21074,6·101636 0,53,4 ·1066,1·10141,3 0,81,3 ·1066,2·10120,035 0,9810510100,001 Из табл. 5 видно, что в недрах Солнца температура превышает 10 миллионов градусов, а давление – сотни миллиардов атмосфер (1 атм = 103 дин/см2). В этих условиях отдельные атомы движутся с огромными скоростями, достигающими, например, для водорода, сотен километров в секунду. Поскольку при этом плотность вещества очень велика, весьма часто происходят атомные столкновения. Некоторые из таких столкновений приводят к тесным сближениям атомных ядер, необходимым для возникновения ядерных реакций. В недрах Солнца существенную роль играют две ядерные реакции. В результате одной из них, схематически изображенной на рис. 130, из четырех атомов водорода образуется один атом гелия. На промежуточных стадиях реакции образуются ядра тяжелого водорода (дейтерия) и ядра изотопа Не3. Эта реакция называется протон-протонной. Другая реакция в условиях Солнца играет значительно меньшую роль. В конечном счете она также приводит к образованию ядра гелия из четырех протонов. Процесс сложнее и может протекать только при наличии углерода, ядра которого вступают в реакцию на первых ее этапах и выделяются на последних. Таким образом, углерод является катализатором, почему и вся реакция носит названия углеродного цикла. Исключительно важным является то обстоятельство, что масса ядра гелия почти на 1% меньше массы четырех протонов. Эта кажущаяся потеря массы называется дефектом массы и является причиной выделения в результате ядерных реакций большого количества энергии, так как согласно формуле Эйнштейна энергия, которая связана с массой т, равна Е = тЧ с2 Описанные ядерные реакции являются источником энергии, излучаемой Солнцем в мировое пространство. Так как наибольшие температуры и давление создаются в самых глубоких слоях Солнца, ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходит в самом центре Солнца. Только здесь наряду с протон-протонной реакцией большую роль играет углеродный цикл. По мере удаления от центра Солнца температура и давление становятся меньше, выделение энергии за счет углеродного цикла быстро прекращается и вплоть до расстояния около 0,2-0,3 радиуса от центра существенной остается только протон-протонная реакция. На расстоянии от центра больше 0,3 радиуса температура становится меньше 5 миллионов градусов, а давление ниже 10 миллиардов атмосфер. В этих условиях ядерные реакции происходить совсем не могут. Эти слои только передают наружу излучение, выделившееся на большей глубине в виде гамма-квантов, которые поглощаются и переизлучаются отдельными атомами. Существенно, что вместо каждого поглощенного кванта большой энергии атомы, как правило, излучают несколько квантов меньших энергий. Происходит это по следующей причине. Поглощая, атом ионизуется или сильно возбуждается и приобретает способность излучать. Однако возвращение электрона на исходный энергетический уровень происходит не сразу, а через промежуточные состояния, при переходах между которыми выделяются кванты меньших энергий. В результате этого происходит как бы “дробление” жестких квантов на менее энергичные. Поэтому вместо гамма-лучей излучаются рентгеновские, вместо рентгеновских – ультрафиолетовые, которые в свою очередь уже в наружных слоях дробятся на кванты видимых и тепловых лучей, окончательно излучаемых Солнцем. Та часть Солнца, в которой выделение энергии за счет ядерных реакций несущественно и происходит процесс переноса энергии путем поглощения излучения и последующего переизлучения, называется зоной лучистого равновесия. Она занимает область примерно от 0,3 до 0,7 r¤ от центра Солнца. Выше этого уровня в переносе энергии начинает принимать участие само вещество, и непосредственно под наблюдаемыми внешними слоями Солнца, на протяжении около 0,3 его радиуса, образуется конвективная зона, в которой энергия переносится конвекцией. Наконец, самые внешние слои Солнца, излучение которых можно наблюдать, называются солнечной атмосферой; в основном она состоит из трех слоев, называемых фотосферой, хромосферой и короной. Они будут рассмотрены в следующих параграфах. В целом описанная структура Солнца изображена на рис. 131. Рис. 131. Схематический разрез Солнца и его атмосферы § 121. Фотосфера Фотосферой называется основная часть солнечной атмосферы, в которой образуется видимое излучение, имеющее непрерывный спектр. Таким образом, она излучает практически всю приходящую к нам солнечную энергию. Фотосфера видна при непосредственном наблюдении Солнца в белом свете в виде кажущейся его “поверхности”. Первое, что бросается в глаза во время таких наблюдений, – плавное потемнение солнечного диска к краю. По мере удаления от центра яркость убывает все быстрее и быстрее, особенно на самом краю, который оказывается очень резким. На рис. 132 изображено изменение яркости диска Солнца с расстоянием от центра при наблюдении в различных лучах. Потемнение диска Солнца к краю объясняется тем, что в фотосфере происходит рост температуры с глубиной. Различные точки солнечного диска обычно характеризуют углом 9, который составляет луч зрения с нормалью к поверхности Солнца в рассматриваемом месте (рис. 133). В центре диска этот угол равен нулю и луч зрения совпадает с радиусом Солнца. На краю q = 90°, и луч зрения скользит вдоль касательной к слоям Солнца. Как было показано в § 105, большая часть излучения некоторого слоя газа исходит от уровня, находящегося на оптической глубине t « 1. Когда луч зрения пересекает слои фотосферы под большим углом 9, оптическая глубина t = 1 достигается в более внешних слоях, где температура меньше. Вследствие этого интенсивность излучения от краев солнечного диска меньше интенсивности излучения его середины (рис. 134). Точные измерения распределения яркости по диску Солнца позволяют рассчитать изменение с глубиной всех важнейших характеристик фотосферы. Такой расчет называется построением ее модели. Не вдаваясь в детали, изложим основную его идею. Определение зависимости температуры от глубины. Уменьшение яркости солнечного диска к краю в первом приближении пропорционально cos q и может быть представлено эмпирической формулой I(q ) = I0(1 – u + u cos q ),(9.11) где I(q ) – яркость в точке, в которой луч зрения составляет угол q с нормалью, I0 – яркость излучения центра диска, и – коэффициент пропорциональности, зависящий от длины волны. В соответствии с рис. 132 для красных лучей значение и меньше, чем для синих. Для зеленых лучей с длиной волны l = 5000 Е и = 0,65, I0 = 4,6 Ч 1014 эрг/см2 Ч сек Ч стерад для Dl = 1 см. Теперь воспользуемся тем обстоятельством, что наблюдаемая яркость примерно равна излучательной способности вещества на оптической глубине t = 1 (см. стр. 223). Поскольку при переходе от центра диска к краю изменяется угол наблюдения, различие яркости I(q ) по диску Солнца отражает соответствующее изменение излучательной способности атмосферы с глубиной (или оптической толщиной, измеряемой вдоль радиуса). Из рис. 134 видно, что количество вещества вдоль отрезка радиуса в sec q раз меньше, чем вдоль отрезка луча зрения, заключенного между теми же концентрическими слоями. Следовательно, слой, фактически наблюдаемый в данной точке диска (т.е. расположенный на оптической глубине, равной 1 вдоль луча зрения), находится на оптической глубине вдоль радиуса t = cos q . Подставляя это в (9.11), получаем, что излучательная способность атмосферы изменяется с оптической глубиной вдоль радиуса следующим образом: I(t ) = I0(1 – u + ut ),(9.12) или, для зеленых лучей, I5000 (t 5000) = (0,35 + 0,65t 5000)Ч4,6Ч1014 эрг/см2Ч секЧстерадЧсм. Таким образом, излучение фотосферы на оптической глубине t l , отсчитываемой вдоль радиуса, приблизительно равно яркости солнечного диска в точке, где cos q = t l . Фотосфера сильно излучает, а следовательно, и поглощает излучение во всей области видимого непрерывного спектра. Это дает право применять к ее излучению законы теплового равновесия, сформулированные в § 106. Тогда для каждого слоя фотосферы, расположенного на определенной глубине, можно найти такое значение температуры, при котором рассматриваемое излучение (в нашем случае с длиной волны l = 5000 Е) Как видно из этой таблицы, температура в фотосфере растет с глубиной и в среднем близка к 6000°. Вспоминая выводы, сделанные в § 119, мы видим, что верхние слои фотосферы совпадают с выявленной там областью минимальной температуры. Далее, из заключения того же параграфа следует, что водород в фотосфере ионизован слабо. Определение протяженности фотосферы. Чтобы оценить протяженность фотосферы, воспользуемся введенным в § 120 понятием шкалы высоты. Для атмосферы давление на верхней границе P1 стремится к нулю, а потому давление у основания P2 « r gH.(9.13) Величину Н можно рассматривать как протяженность такой однородной атмосферы с постоянной плотностью r , которая создает то же давление у основания, что и рассматриваемая. Поэтому величину Н часто называют высотой однородной атмосферы. Она характеризует протяженность атмосферы. Действительно, выражение (9.13) можно переписать так: mg¤ H = kT,(9.14) где m и k суть m и R , рассчитанные на одну частицу. Как следует из последнего равенства, частицы атмосферных газов распределяются таким образом, что их наиболее вероятная кинетическая энергия равна потенциальной энергии, соответствующей подъему на высоту Н, совпадающую со шкалой высоты (9.5). Поскольку фотосфера состоит главным образом из неионизованного водорода, для нее m « 1. Подставляя это значение в формулу (9.14) и полагая в ней T = 6000° и g¤ = 2,7Ч104 см/сек2, находим, что (9.15) Следовательно, существенное изменение плотности происходит в фотосфере на протяжении сотен километров, что составляет примерно 1/3000 часть солнечного радиуса. Плотность вещества и давление в фотосфере. В § 108 было показано, что слой, в котором возникает наибольшая доля выходящего излучения, расположен на оптической глубине t = 1. Поэтому, согласно определению оптической толщины (7.29), t = k r H « 1.(9.16) В этом выражении k – коэффициент поглощения, рассчитанный на 1 г вещества. В среднем для фотосферного вещества он равен 0,6 см2/г. Тогда, полагая Н = 180 км, получаем Более точные расчеты показывают, что плотность в фотосфере меняется от 0,1Ч10-7 г/см3 в верхних слоях примерно до 5Ч10-7 г/см3 в самых глубоких. Поскольку масса атома водорода равна 1,6Ч10-24 г, это означает, что в 1 см3 фотосферы содержится от 6Ч1015 до 3Ч1017 атомов. Теперь по формуле (7.9) легко найти давление газа, полагая m = 1 г/моль и Т = 6000°, которое, очевидно, меняется от 5Ч103 до 2,5Ч105 дин/см2. Давление 105 дин/см2 соответствует 100 миллибарам или около 0,1 атмосферы. Проведенные рассуждения являются лишь грубой иллюстрацией основных этапов определения физических свойств вещества в фотосфере. Все численные результаты весьма приближенны. Тем не менее они дают верное представление об условиях в фотосфере и хорошо согласуются с более точными значениями, приведенными в табл. 6, в которой геометрическая глубина h отсчитывается от уровня, соответствующего наблюдаемому краю Солнца со знаком “+” вверх и “-” вглубь фотосферы. Итак, фотосфера – тонкий слой газа протяженностью в несколько сотен километров, весьма непрозрачный, с концентрацией частиц около 1016-1017 в 1 см3, температурой 5-6 тысяч градусов и давлением около 0,1 атмосферы. В этих условиях все химические элементы с небольшими потенциалами ионизации (в несколько вольт, например, Na, К, Са) ионизуются. Остальные элементы, в том числе водород, остаются преимущественно в нейтральном состоянии. Фотосфера – единственная на Солнце область нейтрального водорода. Однако в результате незначительной ионизации водорода и практически полной ионизации металлов в ней все же имеются свободные электроны. Эти электроны играют исключительно важную роль: соединяясь с нейтральными атомами водорода, они образуют отрицательные ионы водорода (Н-). Это протоны, с которыми связан не один, как обычно у водорода, а два электрона. Отрицательные ионы водорода образуются в ничтожном количестве: из ста миллионов водородных атомов в среднем только один превращается в отрицательный ион. Ионы Н– обладают свойством необычайно сильно поглощать излучение, особенно в инфракрасной и видимой областях спектра. Поэтому, несмотря на свою ничтожную концентрацию, отрицательные ионы водорода являются основной причиной, определяющей поглощение фотосферным веществом излучения в видимой области спектра. § 122. Грануляция и конвективная зона Визуальные и фотографические наблюдения фотосферы, выполненные во время особенно хороших атмосферных условий, позволяют обнаружить тонкую ее структуру, напоминающую тесно расположенные кучевые облака или рассыпанные рисовые зерна (рис. 135). Светлые округлые образования называются гранулами, а вся структура – грануляцией. Угловые размеры гранул в среднем составляют не более 1» дуги, что соответствует на Солнце менее 700 км. Каждая отдельная гранула “существует” в среднем 5-10 минут, после чего она распадается, а на ее месте возникают новые. Гранулы окружены темными промежутками, образующими как бы ячейки или соты. Спектральные линии в гранулах и п промежутках между ними смещены соответственно в синюю и красную сторону. Это означает, что в гранулах – вещество поднимается, а вокруг них опускается. Скорость этих движений составляет 1-2 км/сек. Грануляция – наблюдаемое в фотосфере проявление конвективной зоны, расположенной под фотосферой. В конвективной зоне происходит активное перемешивание вещества в результате подъема и опускания отдельных масс газа (элементов конвекции). Пройдя путь, примерно равный своим размерам, они как бы растворяются в окружающей среде, порождая новые неоднородности. В наружных, более холодных слоях, размеры этих неоднородностей меньше. Причиной возникновения конвекции в наружных слоях Солнца являются два важных обстоятельства. С одной стороны, температура непосредственно под фотосферой очень быстро растет в глубь и лучеиспускание не может обеспечить выхода излучения из более глубоких горячих слоев. Поэтому энергия переносится самими движущимися неоднородностями. С другой стороны, эти неоднородности оказываются весьма “живучими”, если газ в них не полностью, а лишь частично ионизован: за счет ионизационной энергии их температура почти не меняется и избыток температуры долго сохраняется. При переходе в нижние слои фотосферы оба эти обстоятельства перестают действовать: из-за потерь на излучение температура резко уменьшается и замедляется темп ее уменьшения вверх, а газ почти полностью нейтрализуется и, не обладая запасом ионизационной энергии, не способен образовывать устойчивые неоднородности. Поэтому в самых верхних слоях конвективной зоны, непосредственно под фотосферой, конвективные движения резко тормозятся и конвекция внезапно прекращается. Таким образом, фотосфера снизу постоянно как бы “бомбардируется” конвективными элементами. От этих ударов в ней возникают возмущения, наблюдаемые в виде гранул, а сама она приходит в колебательное движение с периодом, соответствующим частоте собственных колебаний фотосферы (около 5 минут). Эти колебания и возмущения, возникающие в фотосфере, порождают в ней волны, по своей природе близкие к звуковым волнам в воздухе. Как мы увидим в следующем параграфе, эти волны играют важную роль для более высоких слоев солнечной атмосферы. § 123. Внешние слои солнечной атмосферы Как уже упоминалось, плотность вещества в фотосфере быстро уменьшается с высотой и внешние слои солнечной атмосферы оказываются сильно разреженными. В наружных слоях фотосферы, где плотность уменьшается до значения 3Ч10-8 г/см3, температура падает примерно до 4500°. Это значение температуры оказывается минимальным для всей солнечной атмосферы. В более высоких слоях температура снова начинает возрастать. Сначала происходит медленное возрастание температуры до нескольких десятков тысяч градусов, сопровождающееся ионизацией водорода, а затем и гелия. Эта часть солнечной атмосферы называется хромосферой. В верхних слоях хромосферы, где разреженность достигает 10-15 г/см3, т.е. в каждом кубическом сантиметре находится всего лишь 109 атомов, происходит еще одно необычайно резкое увеличение температуры, примерно до миллиона градусов. Здесь начинается самая внешняя и наиболее разреженная часть атмосферы Солнца, называемая солнечной короной. Причиной столь сильного разогрева самых внешних слоев солнечной атмосферы является энергия акустических (звуковых) волн, которые, как говорилось в § 122, возникают в фотосфере в результате движения элементов конвекции. При распространении вверх, т.е. в слои с меньшей плотностью, эти волны увеличивают свою амплитуду до нескольких километров и превращаются в ударные волны. Ударные волны отличаются от обычных очень резким перепадом температуры, давления и плотности газа в волне и в невозмущенной среде: Происходит это потому, что в области сжатия растет температура и плотность, а следовательно, и скорость распространения звука. Из-за этого волны с большой амплитудой существенно изменяют свою структуру: в области сжатия вещество “набегает” в направлении распространения волны и образуется резкая граница с примыкающей невозмущенной областью – крутой фронт ударной волны. В результате возникновения ударных волн правильные волнообразные движения протяженных областей атмосферы разбиваются на отдельные более мелкие и беспорядочно движущиеся массы газа. Этот процесс называется диссипацией волн. В результате диссипации, которая особенно сильно происходит в хромосфере и короне, увеличиваются хаотические скорости движения отдельных атомов, т.е. усиливаются тепловые движения частиц. Вследствие этого происходит рост температуры в хромосфере и короне. § 124. Хромосфера Интегральная, т.е. по всему спектру, яркость хромосферы в сотни раз меньше, чем яркость фотосферы, хотя в наиболее интенсивных линиях их излучение соизмеримо. Поэтому для наблюдения хромосферы необходимо применение специальных методов, позволяющих выделить слабое ее излучение из мощного потока фотосферной радиации. Наиболее удобным и исторически первым методом являются наблюдения, производимые вблизи второго и третьего контактов полных солнечных затмений. Как только Луна полностью закроет фотосферу, вблизи точки контакта вспыхивает блестящий розовый серп хромосферы. Ширина такого серпа дает непосредственное представление о протяженности хромосферы, составляющей 16-20», т.е. в линейной мере 12-15 тысяч км. Хромосфера имеет эмиссионный спектр, состоящий из ярких линий (рис. 136). При наблюдении кажется, что они вспыхивают в момент наступления полной фазы затмения. По этой причине спектр хромосферы был назван спектром вспышки. Этот спектр очень похож на спектр Солнца, в котором все линии поглощения заменены на линии излучения, а непрерывный спектр почти отсутствует. Однако в спектре хромосферы линии ионизованных элементов сильнее, чем в спектре фотосферы. В частности, например, в спектре хромосферы очень сильны линии гелия, в то время как в фраунгоферовом спектре они практически не видны. Эти особенности спектра подтверждают рост температуры в хромосфере. Наиболее интенсивны в спектре хромосферы линии ионизованного кальция, водорода и гелия, в которых хромосфера непрозрачна, в то время как она исключительно прозрачна для видимого непрерывного излучения. Следовательно, в центральных частях сильных фраунгоферовых линий мы наблюдаем излучение не фотосферы, а хромосферы. Это обстоятельство лежит в основе важного метода изучения хромосферы в очень узких интервалах спектра, соответствующих центральной части какой-либо линии (чаще всего Нa водорода или К ионизованного кальция), для чего Солнце фотографируется при помощи специального прибора – спектрогелиографа. Поскольку к излучению в этих линиях хромосфера непрозрачна, на фотографии (спектрогелиограмме) все наблюдаемые детали изображения принадлежат хромосфере (рис. 137). Таким образом, мы видим, что, наблюдая излучение фраунгоферовых линий, можно изучать слои солнечной атмосферы, находящиеся на различной глубине. Чем меньше коэффициент поглощения, т.е. чем прозрачнее вещество, тем более глубокие слои мы можем наблюдать. В § 107 было показано, что поглощение в спектральных линиях уменьшается по мере удаления от центра к крылу линии. Поэтому в крыльях линий, а также в центральных частях слабых линий можно наблюдать различные по высоте уровни фотосферы, в то время как центральные части сильных линий позволяют изучить хромосферу. При изучении фотографий хромосферы прежде всего обращает на себя внимание ее неоднородная структура, значительно резче выраженная, чем грануляция в фотосфере. Наиболее мелкие структурные образования в хромосфере называются спикулами. Они имеют продолговатую форму, причем вытянуты преимущественно в радиальном направлении. Длина их составляет несколько тысяч километров, а толщина – около одной тысячи километров. Со скоростями в несколько десятков километров в секунду спикулы поднимаются из хромосферы в корону и растворяются в ней. Таким образом, через спикулы происходит обмен вещества хромосферы с вышележащей короной. Как мы увидим дальше, корональное вещество также может опускаться в хромосферу. Спикулы в свою очередь образуют более крупную структуру, называемую хромосферной сеткой, порожденную волновыми движениями, вызванными значительно большими и более глубокими элементами подфотосферной конвективной зоны, чем гранулы. § 125. Корона Яркость солнечной короны в миллион раз меньше, чем фотосферы, и не превышает яркости Луны в полнолуние. Поэтому наблюдать солнечную корону можно во время полной фазы солнечных затмений, а вне затмений – лишь в коронографы. Корона не имеет резких очертаний и обладает неправильной формой, сильно меняющейся со временем. Об этом можно судить, сопоставляя ее фотографии, полученные во время различных затмений (рис. 138). Яркость короны уменьшается в десятки раз по мере удаления от края Солнца на величину его радиуса. Наиболее яркую часть короны, удаленную от лимба не более, чем на 0,2-0,3 радиуса Солнца, принято называть внутренней короной, а остальную, весьма протяженную часть, – внешней короной. Важной особенностью короны является ее лучистая структура. Лучи бывают различной длины вплоть до десятка и более солнечных радиусов. У основания лучи обычно утолщаются, некоторые из них изгибаются в сторону соседних. Внутренняя корона также богата структурными образованиями, напоминающими дуги, шлемы, отдельные облака (корональные конденсации). Особенно характерна структура, временами наблюдаемая у полюсов: короткие прямые лучи образуют так называемые полярные щеточки. Спектр короны обладает рядом важных особенностей. Основой его является слабый непрерывный фон с распределением энергии, повторяющим распределение энергии в непрерывном спектре Солнца. На фоне этого непрерывного спектра во внутренней короне наблюдаются яркие эмиссионные линии, интенсивность которых уменьшается по мере удаления от Солнца (рис. 139). Большинство из этих линий не удается получить в лабораторных спектрах. Во внешней короне наблюдаются фраунгоферовы линии солнечного спектра, отличающиеся от фотосферных относительно большей остаточной интенсивностью. Излучение короны поляризовано, причем на расстоянии около 0,5 R¤ от края Солнца поляризация увеличивается примерно до 50%, а на больших расстояниях – снова уменьшается. Подобие распределения энергии в непрерывных спектрах короны и фотосферы говорит о том, что излучение короны является рассеянным светом фотосферы. Поляризованность этого света позволяет установить природу частиц, на которых происходит рассеяние. Столь сильную поляризацию могут вызвать только свободные электроны. Поскольку вдоль луча зрения расположены участки короны, которые рассеивают падающее на них излучение фотосферы не только под углом 90°, но и под другими углами (рис. 140), наблюдаемая суммарная поляризация оказывается частичной. Для более удаленных от Солнца участков короны углы между лучом зрения и направлением падающих лучей ближе к 90°. Поэтому с увеличением высоты в короне степень поляризации должна возрастать, что и наблюдается в нижней короне. Однако в верхней короне это увеличение сменяется уменьшением, что говорит о наличии неполяризованной части излучения, относительная доля которой растет с высотой. Эта неполяризованная составляющая является причиной появления во внешней короне фраунгоферовых линий, почему она называется фраунгоферовой короной. Фраунгоферова корона не имеет отношения к солнечной атмосфере. Она представляет собой свет Солнца, рассеянный на мелких межпланетных пылинках, расположенных в пространстве между Землей и Солнцем. Рассеивая свет, они очень слабо его поляризуют. Эти пылинки обладают свойством большую часть падающего на них излучения рассеивать в том же направлении (рис. 141). Поэтому наибольшую интенсивность рассеяние на пылинках дает вблизи Солнца, создавая при этом впечатление “ложной короны”. Это свечение можно наблюдать и на больших расстояниях от Солнца в виде зодиакального света, о котором сказано в гл. Х (§ 144). В каждой точке короны яркость пропорциональна количеству электронов, находящихся на луче зрения. Один свободный электрон рассеивает примерно 10-24 долю от количества излучения, падающего на площадку в 1 см2. Так как у короны яркость в миллион раз меньше, чем у фотосферы, это означает, что в столбике короны сечением в 1 см2 вдоль луча зрения находится 10-6 / 10-24 = 10 18 свободных электронов. Поскольку протяженность короны, измеряемая шкалой высоты, в несколько раз меньше радиуса Солнца, т.е. порядка 1010 см, в среднем в 1 cм3 вещества короны должно находиться свободных электронов. Появление этих свободных электронов может быть вызвано только ионизацией вещества. Однако в целом ионизованный газ (плазма) должен быть нейтрален. Следовательно, концентрация ионов в короне также должна быть порядка 108 см –3. Большая часть этих ионов должна возникнуть в результате ионизации наиболее обильного элемента на Солнце – водорода. Вместе с тем нейтрального водорода в короне не должно быть, так как в ее эмиссионном спектре полностью отсутствуют спектральные линии водорода. Таким образом, общая концентрация частиц в короне должна равняться сумме концентраций ионов и свободных электронов, т.е. по порядку величины ~ 2 Ч108 см –3 Эмиссионные линии солнечной короны принадлежат обычным химическим элементам, но находящимся в очень высоких стадиях ионизации. Наиболее интенсивная – зеленая корональная линия с длиной волны 5303 Е – испускается ионом Fe XIV, т.е. атомом железа, лишенным 13 электронов. Другая интенсивная – красная корональная линия (l 6374 Е) – принадлежит атомам девятикратно ионизованного железа Fe X. Остальные эмиссионные линии отождествлены с ионами Fe XI Fe XIII, Ni XIII, Ni XV, Ni XVI, Са XII, Са XV, Ar X и др. Корональные линии являются запрещенными. Их возникновение в спектре короны говорит о необычайной разреженности ее вещества. Для образования высокоионизованных корональных ионов нужны большие энергии в сотни электрон-вольт (например, потенциал ионизации Fe X 233 в, Fe XIV 355 в, Са XV 814 в). Для сравнения напомним, что для отрыва единственного электрона от атома водорода требуется энергия всего лишь 13,6 эв. Поскольку интенсивность излучения в короне слишком слаба для того, чтобы вызвать сильную ионизацию вещества, причиной последней являются столкновения атомов,. причем прежде всего со свободными электронами. Энергия этих электронов должна составлять сотни электрон-вольт, а их скорость достигать многих тысяч километров в секунду. Эти значения были использованы в § 108 для определения температуры короны, оказавшейся порядка миллиона градусов. Таким образом, солнечная корона представляет собой разреженную плазму с температурой около миллиона градусов. Следствием высокой температуры короны является уже отмечавшаяся необычайная ее протяженность. Действительно, согласно формуле (9.5), шкала высоты пропорциональна температуре. Учитывая, что молекулярный вес ионизованного газа короны вдвое меньше, чем нейтрального водорода в фотосфере, а превышение температуры составляет 150 раз, получаем, что протяженность короны в сотни раз превышает толщину фотосферы и составляет сотни тысяч километров, что прекрасно согласуется с наблюдениями. § 126. Радиоизлучение спокойного Солнца Солнечное радиоизлучение отличается сильной переменностью, особенно на низких частотах. Регистрируя наименьшее значение мощности, можно наблюдаемое излучение разделить на две части: постоянную и переменную. Первая называется радиоизлучением спокойного Солнца, вторая – радиоизлучением возмущенного Солнца. Солнечная корона, исключительно прозрачная для видимого излучения, плохо пропускает радиоволны, которые испытывают в ней сильное поглощение, а также преломление (рис. 142). Следовательно, солнечная корона должна излучать радиоволны почти как абсолютно черное тело с температурой в миллион градусов (стр. 211). Поэтому температуру короны определяют по измерению яркостной температуры солнечного радиоизлучения. На метровых волнах яркостная температура короны действительно составляет около миллиона градусов. На более коротких волнах она уменьшается. Это связано с увеличением глубины, откуда выходит излучение, из-за уменьшения поглощающих свойств плазмы (рис. 143). Так, например, на сантиметровых волнах излучение беспрепятственно выходит из верхней хромосферы, а на миллиметровых волнах – из средних и нижних ее слоев. Радиометоды позволяют проследить солнечную корону на огромных расстояниях от Солнца: в несколько десятков радиусов. Это возможно благодаря тому, что ежегодно, в июне, при своем движении по эклиптике Солнце проходит мимо мощного источника радиоизлучения – Крабовидной туманности в созвездии Тельца. При прохождении через солнечную корону радиоволны, принадлежащие этому источнику, рассеиваются на отдельных неоднородностях короны. Вследствие этого во время “затмения” Крабовидной туманности внешними частями солнечной короны наблюдается уменьшение радиояркости (т.е. яркости радиоизлучения) источника. Обнаруженные таким путем наиболее далекие от Солнца области короны называют сверхкороной. Дальнейшие исследования показали, что солнечная атмосфера простирается весьма далеко, вплоть до орбиты Земли. Об этом свидетельствует обнаруженная слабая поляризация зодиакального света (см. рис. 141). Кроме того, на основании изучения движения вещества в хвостах комет, выяснилось, что из солнечной короны происходит постоянное истечение плазмы со скоростью, постепенно увеличивающейся по мере удаления от Солнца и на расстоянии Земли достигающей 300-400 км/сек. Это расширение солнечной короны в межпланетное пространство называется солнечным ветром. Исследование межпланетной плазмы, осуществленное при помощи космических аппаратов, позволило непосредственно зарегистрировать поток протонов и электронов солнечного ветра, соответствующий скорости распространения от Солнца порядка нескольких сотен км/сек и концентрации частиц вблизи Земли 1-10 протонов/см3. § 127. Активные образования в солнечной атмосфере Временами в солнечной атмосфере возникают быстро меняющиеся активные образования, резко отличающиеся от окружающих невозмущенных областей, свойства и структура которых совсем или почти совсем не меняются со временем. В фотосфере, хромосфере и короне проявления солнечной активности весьма различны. Однако все они связаны общей причиной. Такой причиной является магнитное поле, всегда присутствующее в активных областях. Факелы. В невозмущенных областях фотосферы имеется лишь общее магнитное поле Солнца, напряженность которого составляет около 1 эрстеда. В активных областях напряженность магнитного поля увеличивается в сотни и даже тысячи раз. Небольшое усиление магнитного поля до десятков и сотен эрстед сопровождается появлением в фотосфере более яркой области, называемой факелом. В общей сложности факелы могут занимать значительную долю всей видимой поверхности Солнца. Они отличаются характерной тонкой структурой и состоят из многочисленных прожилок, ярких точек и узелков – факельных гранул (рис. 144). Лучше всего факелы видны на краю солнечного диска (здесь. их контраст с фотосферой составляет около 10%), в то время как в центре они почти совсем не видны. Это означает, что на некотором уровне в фотосфере факел горячее соседней невозмущенной области на 200-300°, а на какой-то другой глубине, наоборот, он несколько холоднее. Возникновение факела связано с важным свойством магнитного поля – препятствовать движению ионизованного вещества, происходящему поперек силовых линий. Если магнитное поле обладает достаточно большой энергией, то оно “допускает” движение вещества только вдоль силовых линий. Слабое магнитное поле в области факела не может остановить сравнительно мощных конвективных движений. Однако оно может придать им более правильный характер. Обычно каждый элемент конвекции, помимо общего подъема или опускания по вертикали, совершает небольшие беспорядочные движения в горизонтальной плоскости. Эти движения, приводящие к возникновению трения между отдельными элементами конвекции, тормозятся магнитным полем, имеющимся в области факела, что облегчает конвекцию и позволяет горячим газам подняться на большую высоту и перенести больший поток энергии. Таким образом, появление факела связано с усилением конвекции, вызванным слабым магнитным полем. Факелы – относительно устойчивые образования. Они без. особых изменений могут существовать в течение нескольких недель и даже месяцев. Пятна. В областях факелов с наибольшим усилением магнитного поля могут возникать солнечные пятна. Солнечное пятно появляется в виде крошечной поры, едва отличающейся от темных промежутков между гранулами. Через день пора развивается в круглое темное пятно с резкой границей, диаметр которого постепенно увеличивается вплоть до размеров в несколько десятков тысяч километров (рис. 145). Bсe явление сопровождается плавным увеличением напряженности магнитного поля, которое в центре крупных пятен достигает нескольких тысяч эрстед. Иногда возникает несколько мелких пятен в пределах небольшой области, вытянутой параллельно экватору, – группа пятен. Отдельные пятна преимущественно появляются на западном и восточном краях области, где сильнее других развиваются дна пятна – ведущее (западное) и хвостовое (восточное). Магнитные поля обоих главных пятен и примыкающих к ним мелких всегда обладают противоположной полярностью, почему такую группу пятен называют биполярной. Через 3-4 дня после появления больших пятен вокруг них возникает менее темная полутень, имеющая характерную радиальную структуру. С течением времени площадь, занимаемая группой пятен, постепенно возрастает, достигая наибольшей величины примерно на десятый день. После этого пятна начинают постепенно уменьшаться и исчезать, сначала наиболее мелкие из них, затем хвостовое (предварительно распавшись на несколько пятен), наконец, ведущее. В целом весь этот процесс длится около двух месяцев, однако многие группы солнечных пятен не успевают пройти всех описанных стадий и исчезают раньше. Центральная часть пятна только кажется черной из-за большой яркости фотосферы. На самом деле, в центре пятна яркость меньше только раз в 10, а яркость полутени составляет примерно 3/4 от яркости фотосферы. На основании закона Стефана – Больцмана это означает, что температура в пятне на 2-2,5 тысячи градусов меньше, чем в фотосфере. Понижение температуры в пятне объясняется влиянием магнитного поля на конвекцию. Магнитное поле, особенно если оно сильное, тормозит движения вещества, происходящие поперек силовых линий. Поэтому в конвективной зоне под пятном ослабляется циркуляция газов, которая переносит из глубины наружу существенную часть энергии. В результате температура пятна оказывается меньше, чем в невозмущенной фотосфере. Флоккулы. Хромосфера над пятнами и факелами увеличивает свою яркость (возмущенная хромосфера), причем контраст между возмущенной и невозмущенной хромосферой растет с высотой. На рис. 137 приведены почти одновременно полученные спектрогелиограммы Солнца в линиях Нa водорода, К ионизованного кальция и La водорода, относящиеся соответственно к слоям хромосферы, расположенным на высотах 2-3 тыс. км, 5-6 тыс. км и 8-10 тыс. км. Яркие пятна, заметные на этих спектрогелиограммах и совпадающие по своим очертаниям с положением фотосферных факелов, называются флоккулами. Увеличение яркости флоккула по сравнению с окружающей невозмущенной хромосферой не дает оснований для определения его температуры, так как в разреженной и весьма прозрачной для непрерывного спектра хромосфере связь между температурой и излучением не подчиняется закону Планка. Повышенную яркость флоккула в центральных частях сильных линий можно объяснить увеличением плотности вещества в хромосфере в 3-5 раз при почти неизменном значении температуры или лишь слабом ее увеличении. Хромосферные вспышки. В хромосфере, чаще всего в небольшой области между развивающимися пятнами, особенно вблизи границы раздела полярности сильных магнитных полей, наблюдаются самые мощные и быстро развивающиеся проявления солнечной активности, называемые хромосферными вспышками (рис. 146). В начале вспышки яркость одного из светлых узелков флоккула внезапно подрастает. Часто менее, чем за минуту сильное излучение распространяется вдоль длинного жгута или “заливает” целую область протяженностью в десятки тысяч километров. В видимой области спектра усиление свечения происходит главным образом в спектральных линиях водорода, ионизованного кальция и других металлов. Уровень непрерывного спектра также возрастает, иногда настолько сильно, что вспышка становится заметной в белом свете на фоне фотосферы. Одновременно с видимым излучением сильно возрастает интенсивность ультрафиолетовых и рентгеновских лучей, а также мощность солнечного радиоизлучения. Во время вспышек наблюдаются самые коротковолновые (т.е. наиболее “жесткие” рентгеновские спектральные линии и даже в некоторых случаях гамма-лучи. Увеличение (всплеск) всех этих видов излучения происходит за несколько минут. После достижения максимума уровень излучения постепенно ослабевает в течение нескольких десятков минут. Помимо увеличения яркости во время вспышек наблюдаются мощные движения газов, а также выбросы облаков плазмы в виде отдельных конденсаций и “брызг”. Все перечисленные явления объясняются выделением большого количества энергии в результате неустойчивости плазмы, находящейся в области очень неоднородого магнитного поля. В результате сложного процесса взаимодействия магнитного ноля и плазмы значительная часть энергии магнитного поля переходит в тепло, нагревая газ до температуры в десятки миллионов градусов, а также идет на ускорение облаков плазмы и элементарных частиц. Весь процесс имеет характер взрыва, сопровождающегося сильным сжатием вещества в некотором объеме хромосферы. Общее количество энергии, выделяющейся в виде оптического, ультрафиолетового, рентгеновского и радиоизлучения, а также идущей на ускорение плазмы и отдельных частиц достигает 1028-1032 эрг. Ускорение частиц (корпускул) – электронов и протонов – во вспышках происходит соответственно до энергий в десятки килоэлектронвольт и в несколько мегаэлектронвольт. Частицы с такими энергиями являются космическими лучами, хотя и во много раз менее энергичными, чем космические лучи, приходящие к нам из далеких областей Галактики и которые мы рассмотрим в § 169. Поэтому их называют “мягкими” космическими лучами. Помимо них во время вспышек образуются частицы, обладающие и меньшими скоростями. Образуемые ими облака и корпускулярные потоки распространяются со скоростями 500-1000 км/сек. Корпускулярное излучение вспышек объясняет особо мощное их рентгеновское и радиоизлучение, отличающееся от упоминавшегося выше теплового излучения очень горячего газа и называемое нетепловым. Во-первых, наблюдаемое через несколько минут после начала вспышки усиление рентгеновских лучей с длинами волн в несколько ангстремов возникает из-за торможения быстрых электронов космических лучей в магнитных полях активной области и в результате столкновений с частицами вещества хромосферы. Во-вторых, вскоре после вспышек наблюдается очень сильное (иногда в миллионы раз) увеличение мощности солнечного радиоизлучения на некоторой частоте, постепенно уменьшающейся со временем. Причиной этого всплеска радиоизлучения являются происходящие с теми же частотами колебания плазмы, вызванные прохождением через нее космических лучей. Частоты этих колебаний уменьшаются по мере проникновения потока корпускул, порожденных вспышкой, в более верхние слои хромосферы и короны. Из всех активных образований на Солнце вспышки выделяются своей особой способностью воздействовать на геофизические явления, о чем будет сказано в § 131. Протуберанцы. Активными образованиями, наблюдаемыми в короне, являются протуберанцы – более плотные и холодные облака, светящиеся примерно в тех же спектральных линиях, что и хромосфера. Они бывают весьма различных форм и размеров. Чаще всего это длинные, очень плоские образования, расположенные почти перпендикулярно к поверхности Солнца. Поэтому в проекции на солнечный диск (на спектрогелиограммах) протуберанцы выглядят в виде изогнутых волокон (они видны на рис. 137, в). Протуберанцы – наиболее грандиозные образования в солнечной атмосфере, их длина достигает сотен тысяч километров, хотя ширина не превышает 6000-10 000 км. Нижние их части сливаются с хромосферой, а верхние простираются на десятки тысяч километров в корону. Однако встречаются протуберанцы и значительно больших размеров (рис. 147). Через протуберанцы постоянно происходит обмен вещества хромосферы и короны. Об этом свидетельствуют часто наблюдаемые движения как самих протуберанцев, так и отдельных их частей, происходящие со скоростями в десятки и сотни километров в секунду. Возникновение, развитие и движение протуберанцев тесно связано с эволюцией групп солнечных пятен. На первых стадиях развития активной области пятен образуются короткоживущие и быстро меняющиеся протуберанцы вблизи пятен. На более поздних стадиях возникают устойчивые спокойные протуберанцы, существующие без заметных изменений в течение нескольких недель, и даже месяцев, после чего внезапно может наступить стадия активизации протуберанца, проявляющаяся в возникновении сильных движений, выбросов вещества в корону и появлении быстро движущихся эруптивных протуберанцев. Активные области в короне. Внешний вид солнечной короны тесно связан с проявлением активности в более низких слоях атмосферы. Над пятнами наблюдаются характерные образования в виде изогнутых лучей, напоминающие кусты, а также уплотнения коронального вещества в виде округлых облаков – корональные конденсации. Над факелами видны целые системы прямолинейных, слегка волнистых лучей. Протуберанцы обычно бывают окружены дугами и шлемами из уплотненного вещества короны. Все эти образования над пятнами, факелами и протуберанцами часто переходят в длинные лучи, простирающиеся на расстояния во много радиусов Солнца. Понятие о центре солнечной активности. Все рассмотренные активные образования в солнечной атмосфере тесно связаны между собой. Возникновение факелов и флоккулов всегда предшествует появлению пятен. Вспышки возникают во время наиболее быстрого роста группы пятен или в результате происходящих в них сильных изменений. В это же время возникают протуберанцы, которые часто продолжают долгое время существовать после распада активной области. Совокупность всех проявлений солнечной активности, связанных с данным участком атмосферы и развивающихся в течение определенного времени, называется центром солнечной активности. Структура короны также определяется расположением и движением в ней силовых линий магнитного поля, выходящих из центров активности и проникающих иногда на большие расстояния. Движущееся магнитное поле увлекает с собой ионизованное вещество (плазму), которое и образует уплотнения, наблюдаемые в виде характерной структуры. Так, например, корональные лучи вызваны движением через корону корпускулярных потоков, в частности, образующихся во время вспышки. § 128. Цикл солнечной активности Количество пятен и других связанных с ними проявлений солнечной активности периодически меняется. Эпоха, когда количество центров активности наибольшее, называется максимумом солнечной активности, а когда их совсем или почти совсем нет, – минимумом. В качестве меры степени солнечной активности пользуются условными числами Вольфа, пропорциональными сумме общего числа пятен (f ) и удесятеренного числа их групп (g): W = k (f + 10g).(9.17) Коэффициент пропорциональности k зависит от мощности применяемого инструмента. Обычно числа Вольфа усредняют (например, по месяцам или годам) и строят график зависимости солнечной активности от времени. На рис. 148 изображена типичная кривая солнечной активности, из которой видно, что максимумы и минимумы чередуются в среднем через каждые 11 лет, хотя промежутки времени между отдельными последовательными максимумами могут колебаться в пределах от 7 до 17 лет. В эпоху минимума в течение некоторого времени пятен на Солнце, как правило, совсем нет. Затем они начинают появляться далеко от экватора, примерно на широтах ±35°. В дальнейшем зона пятнообразования постепенно спускается к экватору (закон Шперера). Однако в областях, удаленных от экватора меньше чем на 8°, пятна бывают очень редко. Важной особенностью цикла солнечной активности является закон изменения магнитной полярности пятен. В течение каждого 11-летнего цикла все ведущие пятна биполярных групп имеют некоторую полярность в северном полушарии и противоположную в южном. То же самое справедливо для хвостовых пятен, у которых полярность всегда противоположна полярности ведущего пятна. В следующем цикле полярность ведущих и хвостовых пятен меняется на противоположную. Одновременно с этим меняется полярность и общего магнитного поля Солнца, полюсы которого находятся вблизи полюсов вращения. Одиннадцатилетней цикличностью обладают и многие другие характеристики: доля площади Солнца, занятая факелами и флоккулами, частота вспышек, количество протуберанцев, а также форма короны и мощность солнечного ветра. В эпоху минимума солнечных пятен корона имеет вытянутую форму, которую придают ей длинные лучи, искривленные в направлении вдоль экватора. У полюсов наблюдаются характерные короткие лучи – “полярные щеточки”. Во время максимума пятен форма короны округлая благодаря большому количеству прямых радиальных лучей. Причина цикла солнечной активности – одна из наиболее увлекательных загадок Солнца. Скорее всего, она связана с некоторым колебательным процессом, происходящим в подфотосферных слоях, в котором принимает активное участие магнитное поле. Согласно одним гипотезам слабое магнитное поле Солнца, постоянно наблюдаемое в фотосфере, периодически усиливается в результате конвективных движений, “запутывающих” силовые линии магнитного поля. Согласно другим гипотезам считается, что поле усиливается из-за неодинаковой скорости вращения на разных гелиографических широтах, в результате чего меридиональные силовые линии вытягиваются параллельно экватору и, обвиваясь вокруг Солнца, приводят к образованию трубок силовых линий магнитного поля. Области с усиленным магнитным полем расширяются вследствие магнитного давления, становятся легче окружающего газа и, всплывая, порождают различные явления солнечной активности. ЛИТЕРАТУРАЛИТЕРАТУРА Книги по общим вопросам. Струве О., Линдс Б., Пилланс Э., Элементарная астрономия; “Наука”, 1964. Дагаев М.М., Лабораторный практикум по курсу общей астрономии, “Высшая школа”, 1972. Воронцов-Вельяминов Б.А., Сборник задач и практических упражнений по астрономии, изд. 6-е, “Наука”, 1974. Миннарт М., Практическая астрономия, “Мир”, 1971. Астрономический календарь. Постоянная часть, изд. 6-е, “Наука”, 1973. Астрономический календарь. Переменная часть, издается ежегодно. К главам I и III. Куликов К.А., Курс сферической астрономии, изд. 2-е, “Наука”, 1969. К главе II. Рябов Ю.А., Движения небесных тел, изд. 2-е, Физматгиз, 1962 К главе III. Демин В.Г., Судьба Солнечной системы, “Наука”, 1975. К главе VIII. Каплан С.Л., Элементарная радиоастрономия, “Наука”, 1966. Мельников О.А., Слюсарев Г.Г., Марков А.В., Купревич Н.Ф., Современный телескоп, “Наука”, 1968. Михельсон Н.Н., Оптические телескопы. Теория и конструкция, “Наука”, 1976. К главе IX. Пикельнер С.Б., Солнце, Физматгиз, 1961. К главе X. Гуди Р. и Уокер Дж., Атмосферы, “Мир”, 1975. Мартынов Д.Я., Планеты, решенные и нерешенные проблемы, “Наука”, 1970. Вуд Дж., Метеориты и происхождение Солнечной системы, “Мир”, 1971. Куликов К.А., Сидоренков Н.С., Планета Земля, “Наука”, 1972. Жарков В.Н., Внутреннее строение Земли, Луны и планет, “Знание”, 1973. Куликов К.А., Гуревич В.Б., Новый облик старой Луны, “Наука”, 1974. К главе XI. Каплан С.А., Физика звезд, изд. 3-е, “Наука”, 1977. К главам XII, XIII и XIV. Агекян Т.А, Звезды, галактики, Метагалактика, изд. 2-е, “Наука”, 1973. Шкловский И.С., Вселенная, жизнь, разум, изд. 4-е, “Наука”, 1976. Шкловский И.С., Звезды: их рождение, жизнь и смерть, “Наука”, 1975. Ефремов Ю.Н., В глубины Вселенной, изд. 2-е, “Наука”, 1977. Гинзбург В.Л., Как устроена Вселенная и как она развивается во времена, “Знание”, 1968. У икс Т.К., Астрофизика высоких энергий, “Мир”, 1972. Аллер Л., Атомы, звезды, и туманности, “Мир”, 1976. ПРИЛОЖЕНИЯ 4. Перевод единиц СГС в СИ В астрономической литературе допускается применение системы СГС, в которой основными единицами являются: сантиметр, грамм и секунда. Поэтому ниже приводится таблица для перевода встречающихся в данной книге единиц СГС в общепринятую систему единиц СИ, в которой основными единицами являются: килограмм, метр, секунда, Ампер, Кельвин и свеча. 1 см =10-2 м 1 г = 10-3 кг 1 дин/см2 = 0,1 н/м2 1 эрг =10-7 Дж 1 эрг/сек = 10-7 Вт 1 кал = 4,1868 Дж 1 гс = 10-4 Т 1 э = 103 А/м 1 град = 1 К


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Курс общей астрономии"

Книги похожие на "Курс общей астрономии" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора П.И.Бакулин, Э.В.Кононович, В.И. Мороз

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии"

Отзывы читателей о книге "Курс общей астрономии", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.