» » » » П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии


Авторские права

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии

Здесь можно скачать бесплатно " П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Курс общей астрономии
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Курс общей астрономии"

Описание и краткое содержание "Курс общей астрономии" читать бесплатно онлайн.








1), но те же возмущения могут возвратить кометы на эллиптические орбиты. Расстояние в афелии у некоторых комет достигает 50 000-100 000 а.е., а период обращения – нескольких миллионов лет. У немногих короткопериодических комет орбиты почти круговые. Наклонения орбит комет также разнообразны и часто превышают 90°, т.е. кометы движутся вокруг Солнца как в прямом, так и в обратном направлении. Движение отдельных метеорных тел очень сложное, но многие из них образуют метеорные потоки, движущиеся по орбитам, подобным орбитам комет. Более детально характеристики тел Солнечной системы будут рассмотрены в гл. X.

§ 69. Движение Земли вокруг Солнца

Так как наблюдатель вместе с Землей движется в пространстве вокруг Солнца почти по окружности, то направление с Земли на близкую звезду должно меняться и близкая звезда должна казаться описывающей на небе в течение года некоторый эллипс. Этот эллипс, называемый параллактическим, будет тем более сжатым, чем ближе звезда к эклиптике и тем меньшего размера, чем дальше звезда от Земли. У звезды, находящейся в полюсе эклиптики, эллипс превратится в малый круг, а у звезды, лежащей на эклиптике, – в отрезок дуги большого круга, который земному наблюдателю кажется отрезком прямой (рис. 45). Большие полуоси параллактических эллипсов равны годичным параллаксам звезд.

Следовательно, наличие годичных параллаксов у звезд является доказательством движения Земли вокруг Солнца. Первые определения годичных параллаксов звезд были сделаны в 1835-1840 гг. Струве, Бесселем и Гендерсоном. Хотя эти определения были не очень точными, однако они не только дали объективное доказательство движения Земли вокруг Солнца, но и внесли ясное представление об огромных расстояниях, на которых находятся небесные тела во Вселенной. Вторым доказательством движения Земли вокруг Солнца является годичное аберрационное смещение звезд, открытое еще в 1728 г. английским астрономом Брадлеем при попытке определить годичный параллакс звезды у Дракона. Аберрацией вообще называется явление, состоящее в том, что движущийся наблюдатель видит светило не в том направлении, в котором он видел бы его в тот же момент, если бы находился в покое. Аберрацией называется также и сам угол между наблюдаемым (видимым) и истинным направлениями на светило. Различие этих направлений есть следствие сочетания скорости света и скорости наблюдателя. Пусть в точке К (рис. 46) находится наблюдатель и крест нитей окуляра инструмента, а в точке О – объектив инструмента. Наблюдатель движется по направлению КА со скоростью v.

Луч света от звезды М встречает объектив инструмента в точке О и, распространяясь со скоростью с, за время t пройдет расстояние ОK = сt и попадет в точку K. Но изображение звезды на крест нитей не попадет, так как за это же время t наблюдатель и крест нитей переместятся на величину KK1 = vt и окажутся в точке K1. Для того чтобы изображение звезды попало на крест нитей окуляра, надо инструмент установить не по истинному направлению на звезду КМ, а по направлению К0О и так, чтобы крест нитей находился в точке К0 отрезка К0К = К1К = vt . Следовательно, видимое направление на звезду К0М' должно составить с истинным направлением КМ угол s , который и называется аберрационным смещением светила. Из треугольника КО К0 следует:

или, по малости угла а, (4.1)

где q – угловое расстояние видимого направления на звезду от точки неба, в которую направлена скорость наблюдателя. Эта точка называется апексом движения наблюдателя. Наблюдатель, находящийся на поверхности Земли, участвует в двух ее основных движениях: в суточном вращении вокруг оси и в годичном движении Земли вокруг Солнца. Поэтому различают суточную и годичную аберрации. Суточная аберрация есть следствие сочетания скорости света со скоростью суточного вращения наблюдателя, а годичная – со скоростью его годичного движения. Так как скорость годичного движения наблюдателя есть скорость движения Земли по орбите v = 29,78 км/сек, то, принимая с = 299 792 км/сек, согласно формуле (4.1), будем иметь s = 20”,496 sin q « 20”,50 sin q. Число k0 = 20”,496 « 20»,50 называется постоянной аберрации. Так как апекс годичного движения наблюдателя находится в плоскости эклиптики и перемещается за год на 360°, то видимое положение звезды, находящейся в полюсе эклиптики (q = b = 90°), описывает в течение года около своего истинного положения малый круг с радиусом 20”,50. Видимые положения остальных звезд

описывают аберрационные эллипсы с полуосями 20»,50 и 20”,50 sin b , где b – эклиптическая широта звезды. У звезд, находящихся в плоскости эклиптики (b =

0), эллипс превращается в отрезок дуги длиной 20”,50 Ч 2 = 41”,00, точнее, 40»,99. Таким образом, самый факт существования годичного аберрационного смещения у звезд является доказательством движения Земли вокруг Солнца. Различие между параллактическим и аберрационным смещением заключается в том, что первое зависит от расстояния до звезды, второе только от скорости движения Земли по орбите. Большие полуоси параллактических эллипсов различны для звезд, находящихся на разных расстояниях от Солнца, и не превосходят 0»,76, тогда как большие полуоси аберрационных эллипсов для всех звезд, независимо от расстояния, одинаковы и равны 20”,50. Кроме того, параллактическое смещение звезды происходит в сторону видимого положения Солнца, аберрационное же смещение направлено не к Солнцу, а к точке, лежащей на эклиптике, на 90° западнее Солнца.

§ 70. Смена времен года на Земле

Наблюдения показывают, что полюсы мира в течение года не меняют заметным образом своего положения среди звезд. Отсюда следует, что ось вращения Земли при движении ее вокруг Солнца остается параллельной сама себе. Кроме того, изменение склонения Солнца в течение года в пределах от + 23° 27' (в момент летнего солнцестояния) до – 23° 27' (в момент зимнего солнцестояния) свидетельствует о том, что ось вращения Земли не перпендикулярна к плоскости орбиты Земли, а наклонена к ней на угол в 66° 33' = 90° – 23° 27’. Следствием движения Земли вокруг Солнца, наклона оси вращения Земли к плоскости орбиты и постоянства этого наклона является регулярная смена времен года на Земле. Расположение Земли и ее оси вращения по отношению к направлению солнечных лучей в дни равноденствий и в дни солнцестояний показано на рис. 47. Угол между направлением солнечных лучей и нормалью к ровной площадке, расположенной горизонтально на поверхности Земли, в положении I равен i1 = j – e, в положении III – i3 = j + e, а в положении II – i2 = j , где e – наклон эклиптики к экватору, а j – географическая широта места.

Согласно законам физики, величина лучистого потока F, падающего на площадку, пропорциональна косинусу угла между направлением лучей и нормалью к площадке, т.е. F = F0 cos i, где F0 – величина потока, перпендикулярно падающего на площадку (i = 90°). В день летнего солнцестояния (положение I) F1 = F0 cos (j – e). В день зимнего солнцестояния (положение III) F3 = F0 cos (j + e). Наконец, в дни равноденствий (положение II) F2 = F0 cos j . Таким образом, в течение года площадка на поверхности Земли, в зависимости от широты места, получает различное количество лучистой энергии (тепла). Так, например, на широте j = 55° 45' F1 больше F3 в 4,6 раза, а F2 в 1,5 раза меньше F1. Следовательно, северное полушарие Земли в течение весны и лета (с 21 марта по 23 сентября) получает гораздо больше тепла, чем осенью и зимой (с 23 сентября по 21 марта). Южное полушарие, наоборот, больше получает тепла с 23 сентября по 21 марта и меньше – с 21 марта по 23 сентября. Поток лучистой энергии, падающей на Землю, изменяется также и обратно пропорционально квадрату расстояния до Солнца, но это изменение существенной роли в смене времен года на Земле не играет, так как орбита Земли мало отличается от окружности. Действительно, если в афелии Земля получает F солнечного тепла, то в перигелии она получает 1,07 F, т.е. на 7% больше. Этим различием и объясняется несколько менее суровая зима и более прохладное лето в северном полушарии, по сравнению с зимой и летом в южном полушарии Земли. С наклоном оси вращения Земли к плоскости своей орбиты связано также и распределение тепловых поясов на Земле (см. § 16 и 17).

§ 71. Вращение Земли вокруг оси

Вращение Земли вокруг оси проявляется во многих явлениях на ее поверхности. Например, пассаты (постоянные ветры в тропических областях обоих полушарий, дующие к экватору) вследствие вращения Земли с запада на восток дуют с северо-востока в северном полушарии и с юго-востока – в южном полушарии; в северном полушарии подмываются правые берега рек, в южном – левые; при движении циклона с юга на север его путь отклоняется к востоку и т.д.

a) б) Рис 48 Маятник Фуко. А – плоскость качания маятника.

Но наиболее наглядным следствием вращения Земли является опыт с физическим маятником, впервые поставленный физиком Фуко в 1851 г. Опыт Фуко основан на свойстве свободного маятника сохранять неизменным в пространстве направление плоскости своих колебаний, если на него не действует никакая сила, кроме силы тяжести. Пусть маятник Фуко подвешен на северном полюсе Земли и колеблется в какой-то момент в плоскости определенного меридиана l (рис. 48, a). Через некоторое время наблюдателю, связанному с земной поверхностью и не замечающему своего вращения, будет казаться, что плоскость колебаний маятника


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Курс общей астрономии"

Книги похожие на "Курс общей астрономии" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора П.И.Бакулин, Э.В.Кононович, В.И. Мороз

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии"

Отзывы читателей о книге "Курс общей астрономии", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.