Г.И. Мишкевич - Доктор занимательных наук

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Доктор занимательных наук"
Описание и краткое содержание "Доктор занимательных наук" читать бесплатно онлайн.
Книга рассказывает о жизни и деятельности Я.И.Перельмана, основателя особого направления в научной популяризации - занимательного, инициатора создания в Ленинграде "Дома занимательной науки".
Герой романа Марка Твена «Простаки за границей» очутился в незнакомом номере гостиницы и стал в темноте блуждать по нему, отыскивая свои вещи. Он прошагал… 47 миль (!), пока не набрел на вещи. Яков Исидорович, построив график блужданий незадачливого постояльца, в заключение отметил, что люди, бродящие без компаса в степи в метель или в тумане, обычно ходят по круговой, хотя полагают, что идут прямо (для подтверждения приводятся примеры блуждания по снегу героев романа Жюля Верна «Приключения капитана Гаттераса» и рассказа Л.Н. Толстого «Хозяин и работник»). Из романа Джека Лондона «Маленькая хозяйка большого дома» Перельман извлек описание способа квадратуры круга.
Интересно трактуется геометрия подобия. Когда-то на Мадагаскаре водились огромные страусы - эпиорнисы, клавшие яйца длиной 28 сантиметров. Куриное яйцо имеет в длину 5 сантиметров. Скольким куриным яйцам соответствует по объему одно яйцо-гигант?
В книге Джонатана Свифта «Путешествия Гулливера» Яков Исидорович отыскал ряд геометрических задач, в том числе о размерах лилипутов и великанов. Свифт положил в основу сравнения их роста простое линейное соотношение, основанное на числе 12, то есть на соотношении дюйма и английского фута. Поэтому он посчитал паек Гулливера равным 12 пайкам лилипута. Но писатель должен был принять во внимание не линейную, а кубическую зависимость. И тогда, говорит Перельман, результат получился бы иной: обед Гулливера - это не 12, а 12 Ч 12 Ч 12 = 1 728 обедов лилипута. Книга из библиотеки великанов в 1 728 раз больше, ее длина превышает 7 метров, а масса - 3 тонны!
Главу «Геометрическая экономия» Перельман начинает выдержкой из рассказа Л.Н. Толстого «Много ли человеку земли нужно». Герой рассказа зажиточный крестьянин Пахом торгует у башкирского старшины землю: «- А какая цена будет?
- Цена у нас одна: тысяча рублей за день».
Иными словами, сколько за день земли обойдешь, вся твоя, за тысячу рублей.
Едва занялась заря, Пахом отправился в путь. А откуда он начал идти, там старшина положил свою лисью шапку, а в ней - пахомова тысяча.
Прибежал Пахом к шапке с последними закатными лучами Солнца и упал бездыханный…
Этот рассказ, полный глубокого социального и нравственного смысла, Перельман анализирует с точки зрения геометра. Сколько же земли отмерял Пахом за день безостановочного хода? В рассказе Л.Н. Толстого содержатся все необходимые исходные данные для подсчета, и Перельман уточняет: «Л.Н. Толстой несомненно имел перед своими глазами чертеж, когда писал свой рассказ». Оказывается, Пахом успел обойти обширный участок - около 8 000 десятин, однако желанной землицы так и не обрел…
Продолжая «землемерную» тему, Яков Исидорович переносит читателя в глубокую древность. Дидона, дочь Тирского царя, бежала в Африку и высадилась со своими соплеменниками на ее северном берегу. Здесь она купила у нумидийского царя столько земли, «сколько заняла воловья шкура». Когда сделка была совершена, хитрая Дидона разрезала шкуру на множество тончайших ремешков, потом связала их и охватила участок земли. Читателю предлагается вычислить, какова площадь участка при условии, что поверхность целой шкуры равна 4 квадратным метрам. Расчет покажет, что связанными ремешками Дидона объяла ни мало ни много - 1,3 квадратного километра земли! На этом «воловьем» участке, по преданию, соорудили крепость Карфаген.
Есть в книге и другие сюжеты, подсказанные художественными произведениями, в частности легендой о могильных холмах, насыпанных руками воинов:
…Читал я где-то.
Что царь однажды воинам своим
Велел снести земли по горсти в кучу,
И гордый холм возвысился - и царь
Мог с вышины с весельем озирать
И дол, покрытый белыми шатрами,
И море, где бежали корабли.
Математик Перельман за поэтической строкой пушкинского «Скупого рыцаря» увидел несколько иную картину: пусть хоть сто тысяч воинов насыпят горстями «гордый холм» - он возвысится всего на полтора метра. Однако «следствие» о холме доводится до конца: даже семьсот тысяч воинов Аттилы могли бы насыпать холм всего лишь в 4,6 метра высотой.
Цель, сформулированная автором в предисловии к «Занимательной геометрии», - «сделать геометрию привлекательной, внушить охоту и воспитать вкус к ее изучению» - великолепно достигнута. «Сухая» школьная премудрость, показанная в книге в необычном свете, благодаря таланту автора, стала действительно привлекательной.
«Занимательная арифметика»
Математика, как известно, возникла из практических нужд людей. И сегодня трудно представить себе человеческую деятельность, лишенную счета и числа. Когда-то даже была назначена крупная премия за написание книги «Как человек без числа жил», но она так и не выплачена по сей день - не нашлось автора.
Роль и значение числа, счета особенно ярко показаны в книге «Занимательная арифметика». Эта книга, появившаяся в 1926 году (выдержала 9 изданий), полна «таинственных» историй, связанных с числом и счетом. Чуть ли не на каждой странице читателя ожидает встреча со сказкой, легендой, старинной притчей, литературным сюжетом арифметического толка. В книге разбираются только четыре действия арифметики, но как!
Глава I. («Старое и новое о цифрах и нумерации») сразу же вводит в мир «таинственного». Рассказывается о «зловещих» знаках, испещривших стены петроградских домов весной 1917 года; Перельман объясняет их появление неграмотностью дворников, по-своему нумеровавших дома всякими крестами, знаками. Есть в книге рассказы о торговых «метах», арифметике за обеденным столом, о различных системах счисления. Где еще, как не в этой книге, вы найдете сведения о старинных способах деления «галерой» или о старинном египетском папирусе Ринда, в котором изложен способ умножения?
Незадолго до выхода в свет этой книги появился русский перевод «Диалектики природы» Ф. Энгельса. В ней Яков Исидорович почерпнул материал для «Занимательной арифметики»: когда дважды два равно 100?; когда дважды два равно 11?; когда число 10 - нечетное? Эти примеры использования двоичной и пятиричной систем счисления Ф. Энгельс описывает в своем труде.
Не упустил автор «Занимательной арифметики» случай истолковать с позиций математика и шуточный рассказ А.П. Чехова «Репетитор». В нем есть такая задача: «Купец купил 138 арш. черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он того и другого, если синее стоило 5 руб. за аршин, а черное 3 руб.?».
Долго бились над задачей 12-летний Петя Удодов и его репетитор - семиклассник Егор Зиберов, но решить ее так и не сумели. «Эта задача на неопределенные уравнения, - беспомощно развел руками репетитор. - Это задача, собственно говоря, алгебраическая…».
Но тут подошел отец Пети Удодова. «И без алгебры решить можно, - заявил он. Пощелкал на счетах, и у него получилось 75 и 63, что и нужно было. - Вот-с… по-нашему, по-неученому».
Перельман поясняет, что «щелканье на счетах» было па самом деле вполне правильным способом решения арифметической задачи о сукне: отец Пети, отставной губернский секретарь, умел хорошо обращаться с русскими счетами.
В одной из глав собраны примеры из истории арифметики. Особенно трудными были в старину такие действия над числами, как умножение и деление. «Долбица умножения», «Умножение - мое мучение, а деление - беда» - горевали школьники XV…XVI веков. Существовали десятки способов умножения, один замысловатее другого - «по частям, или в разрыв», «крестиком», «решеткой», «органчиком»… Еще труднее было действие деления: «галерой, или лодкой», «способом Тартальи», «девяткой».
Отдельная глава посвящена арифметическим диковинкам - числу 12, древнейшему сопернику десятки; числу 365, связанному с календарем; числу Шахразады (1001) и так далее.
В главе «Фокусы без обмана» рассказано о математических секретах различных фокусов с числами. Автор пишет, что фокусы эти «честные, добросовестные, их может проделать каждый». Найдем мы здесь и сюжет, навеянный древнеиндийской повестью «Наль и Дамаянти» - о молниеносно быстром способе подсчета листьев на дереве.
В главе о числовых загадках египетской пирамиды Хеопса занимательно рассказано о тайнах этого сооружения: сумма периметра четырех сторон основания равна 931,22 метра. Разделив это число на удвоенную величину высоты пирамиды (148,208 метра), получим в частном 3,1416, то есть знаменитое число «пи». А ведь об этом соотношении размеров пирамиды европейские математики дознались лишь в XVI веке - спустя 45 столетий после ее сооружения!
Завершает книгу глава об арифметических путешествиях (врач, навещая пациентов дома, совершает за год 20 «восхождений» на Монблан, а лифтер за 15 лет работы «поднимается» на Луну…)
«Занимательная алгебра»
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Доктор занимательных наук"
Книги похожие на "Доктор занимательных наук" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Г.И. Мишкевич - Доктор занимательных наук"
Отзывы читателей о книге "Доктор занимательных наук", комментарии и мнения людей о произведении.