» » » » Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики с таблицей


Авторские права

Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики с таблицей

Здесь можно скачать бесплатно "Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики с таблицей" в формате fb2, epub, txt, doc, pdf. Жанр: Публицистика, издательство Типографiя К. Л. Меньшова, М., 1909, год 1909. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики с таблицей
Рейтинг:
Название:
Как постепенно дошли люди до настоящей арифметики с таблицей
Издательство:
Типографiя К. Л. Меньшова, М., 1909
Год:
1909
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Как постепенно дошли люди до настоящей арифметики с таблицей"

Описание и краткое содержание "Как постепенно дошли люди до настоящей арифметики с таблицей" читать бесплатно онлайн.



В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой‐нибудь свободный шрифт с их поддержкой

Викитека

Всякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою послѣднюю форму. Въ этой книжкѣ изложена исторія ариѳметики, и очерки ея назначены для тѣхъ, кто чувствуетъ расположеніе къ математикѣ. Юнымъ математикамъ я прежде всего назначаю свой трудъ. Онъ же можетъ пригодиться и для педагога: для учителя крайне важно, чтобы расширился его кругозоръ, чтобы онъ могъ критически отнестись къ настоящему положенію преподаванія, и чтобы историческія данныя оживили обученіе и освѣтили его.

Въ Германіи имѣется масса сочиненій по исторіи математики; очевидно, они нужны и полезны. Пусть же и въ Россіи мой небольшой трудъ сослужитъ свою скромную службу.

О первомъ изданіи этой книжки данъ отзывъ въ «Вѣстникѣ воспитанія» I, 1908 г. и въ «Вѣcтникѣ опытной физики и элементарной математики», № 445. Она названа «интересной», «просто, ясно и кратко написанной».






«Нѣсть се дивно, что тройная статія въ цѣлыхъ, но есть похвально, что въ доляхъ».

Разсмотримъ теперь подробно, какъ развилось ученіе о дробяхъ у различныхъ народовъ.

Древніе египтяне задались въ этомъ отношеніи чрезвычайно оригинальной мыслью. Они пользовались только такими дробями, у которыхъ числитель непремѣнно единица; всѣ остальныя дроби они считали неудобными для вычисленія и старались замѣнять ихъ этими основными дробями, т.-е. съ числителемъ, равнымъ единицѣ, такъ что когда египтянину требовалось произвести какое-нибудь дѣйствіе надъ дробями, то онъ сперва замѣнялъ данныя дроби основными, за-тѣмъ дѣлалъ вычисленіе и уже въ концѣ-концовъ изъ ряда основныхъ дробей выводилъ одинъ общій отвѣтъ. Всѣ замѣны, которыя требовалось при этомъ дѣлать, совершались при помощи обширныхъ таблицъ, спеціально заготовленныхъ на этотъ случай. Вотъ какъ начинаются эти таблицы:

Здѣсь между долями подразумѣвается, очевидно, сложеніе, такъ

Съ дробями, у которыхъ числитель больше двухъ, приходилось немало хлопотать, и составителямъ таблицъ досталось немало труда, напр., надъ разложеніемъ дроби 7/29. Ходъ вычисления такой:

При помощи такихъ таблицъ египтяне умѣли обходиться безъ приведенія дробей къ одному знаменателю; для этого они переводили слагаемыя въ основныя дроби на основаніи таблицъ, соединяли всѣ эти основныя дроби въ одну массу и потомъ смотрѣли, опять же руководствуясь таблицами, какой одной дроби равняется вся эта масса. Какъ составлялись подобныя таблицы? Точнаго отвѣта дать сейчасъ нельзя, тѣмъ болѣе, что они заимствованы изъ папируса Ринда, а этотъ папирусъ относится ко времени за 2000 лѣтъ до Р. X. Можно догадываться, что едва ли всѣ строки принадлежатъ одному составителю, вѣрнѣе всего отдѣльные результаты тщательно собирались въ общій сводъ, такъ что на нѣкоторые отвѣты приходилось наталкиваться случайно, при какихъ-нибудь другихъ вычисленіяхъ.

Такъ какъ египтяне пользовались только основными дробями, т.-е. съ числителемъ, равнымъ единицѣ, то они, обыкновенно, вовсе и не писали числителя, а только подразумѣвали его, писали же одного знаменателя; но чтобы не смѣшать дробь съ цѣлымъ числомъ, они надъ цифрами знаменателя ставили точку. Изъ производныхъ же дробей разсматривалась только 2/3 у которой былъ свой знакъ, такъ что эта дробь принималась за какую-то особенную величину, не стоящую въ прямой связи ни съ цѣлыми числами, ни съ дробями.

Арабы, очевидно, подъ вліяніемъ египтянъ, раздѣляли дроби на «выговариваемыя» и «невыговариваемыя». Такіе термины встрѣчаются, напр., въ VIII—IX в. по Р. X. Выговариваемыми дробями были тѣ, у которыхъ числитель единица, а знаменатель отъ 2 до 9; для нихъ есть особенныя названія, въ родѣ нашихъ «половина», «треть» и т. д. Невыговариваемыми дробями были всѣ остальныя, и, напрВыговариваемьши дробями были тѣ, у которыхъ числитель единица, а знаменатель отъ 2 до 9; для нихъ есть особенныя названія, въ родѣнашихъ «половина», «треть» и т. д. Невыговариваемыми дробями были всѣ остальныя, и, напр., 1/13 выражалась описательно такъ: одна изъ тринадцати долей; 1/30 такъ: шестая часть одной пятой.

Древніе греки часто вводили въ вычисленія дроби. Обозначали они ихъ такъ: сперва писали числителя и сверху справа ставили значекъ въ родѣ запятой, потомъ дважды повторяли знаменателя и приписывали каждый разъ значокъ въ видѣ 2-хъ запятыхъ. Напр., 3/21= γ′Kα′′ Kα′′, такъ какъ у грековъ γ обозначаетъ 3, а α единицу, К двадцать. Однако чаще всего греки, по примѣру египтянъ и арабовъ, пользовались основными долями и при этомъ обыкновенно пропускали числителя, а знаменателя писали съ присоединеніемъ 2 черточекъ, и выходило, напр., что 1/21=Kα′′. Если нѣсколько основныхъ дробей писалось подъ рядъ, то это значило, что ихъ надо сложить. Особенные знаки были для половины: σ (старинная греческая буква сигма) и для 2 третей: ω.

Индусы, въ лицѣ одной изъ древнѣйшихъ своихъ отраслей — доисторическаго племени Тамуловъ, выражали всѣ доли при помощи только ½, ¼, 1/16, 1/40, 1/80, 1/960. Для которыхъ у нихъ были особенныя названія и знаки. Всѣ другія дроби они старались привести къ шести указаннымъ, и это имъ въ болыпинствѣ случаевъ удавлось порядочно, такъ какъ комбинаціи этихъ долей даютъ почти цѣлую единицу.

У индусскаго математика Брамагупты (въ XI в. по Р. X.) имѣется довольно развитая система простыхъ дробей. У него встрѣчаются различныя дроби, и простыя и производныя, т.-е. съ числителемъ и 1, и любое число. Числитель и знаменатель пишутся такъ же, какъ у насъ, но только безъ горизонтальной черты, а просто ставатся одинъ подъ другимъ. Выше числителя помѣщается цѣлое число, если оно есть. И выходитъ по индусскому порядку {| | ||7 |- |5||  |- | |8 |}, а по нашему—57/8.

Представители позднѣйшей арабской учености (XI в.) копируютъ индусскій порядокъ. Если цѣлыхъ нѣтъ, то они вверху помѣщаютъ нуль. Вотъ изображеніе восточно-арабскими цифрами;

отсюда видно, что нуль у восточныхъ арабовъ писался въ видѣ точки. Итальяинецъ Леонардо Фибонначи, слѣдуя манерѣ восточныхъ народовъ (семитовъ) писать справа налѣво, помѣщаетъ, въ случаѣ смѣшанныхъ чиселъ, справа цѣлое число, а лѣвѣе дробь, но читаетъ написанное общепринятымъ европейскимъ порядкомъ, т.е. сперва цѣлое число, а потомъ уже дроби.

Своеобразную систему дробей наблюдаемъ мы у римлянъ. Народъ серьезный, практичный, дѣловой, они предпочитали отвлеченному мышленію наглядность, и поэтому ничего нѣтъ естественнѣе въ ихъ положеніи, какъ замѣнить отвлеченныя доли подраздѣленіями употребительныхъ мѣръ. Они остановили свое вниманіе на мѣрѣ вѣса— фунтъ (ассъ, въ настоящее время аптекарскій фунтъ). Ассъ дѣлится на 12 частей—унцій. Изъ нихъ образуются всѣ дроби со знаменателемъ 12, т.-е.

при этомъ каждая изъ такихъ дробей выражается особеннымъ знакомъ и особеннымъ словомъ; любую дробную величину можно было выражать посредствомъ унцій, напр., вмѣсто того, чтобы сказать: «я прочиталъ 5/12 книги», говорили «я прочиталъ 5 унцій книги». Такимъ образомъ, фунтъ являлся и именованной единицей, и въ то же время отвлеченной, такъ какъ его долями выражались всевозможныя дроби.

Эта римская система дробей держалась въ школахъ Западной Европы вплоть до тѣхъ поръ, когда принесенная чрезъ Испанію арабская — вѣрнѣе сказать, индуссая—ариѳметика стала вступать въ свои права и получила силу и перевѣсъ. Это относится къ XV—XVI вѣк. по Р. X. Въ эти вѣка ученіе о дробяхъ уже получаетъ настоящій обликъ, знакомый намъ теперь, и формируется приблизительно въ тѣ же самые отдѣлы, которые встрѣчаются въ нашихъ настоящихъ учебникахъ. Но все это было еще очень мудрено, туманно и трудно для начинающихъ учиться. О происхожденіи дробей тогда не говорили или же говорили очень мало и съ пропусками. Вмѣсто того прямо начинали съ выговариванія дробей и съ ихъ письм. обозначенія. Вотъ цитата изъ Грамматеуса, нѣмецкаго автора XVI в.:

«слѣдуетъ замѣтить, что всякая дробь имѣетъ 2 цифры, вверху и внизу линіи. Верхняя цифра называется числителемъ, нижняя—знаменателемъ. Выговариваютъ дроби такъ: сперва называютъ верхнюю цифру, затѣмъ нижнюю, съ прибавленіемъ слова «части». Напр. 2/5 — двѣ пятыхъ части».

 Въ русскихъ матем. рукописяхъ XVII в. мы видимъ то же самое, что въ западно-европейскихъ XVI и даже XV столѣтія, потому что, чтобы знанію дойти до Россіи, требовалось столѣтіе или болѣе. «Статія численая о всякихъ доляхъ указъ» начинается прямо съ письм. обозначенія дробей и съ указанія числителя и знаменателя. При выговариваніи дробей интересны такія особенности: четвертая доля называлась четью, доли же со знаменателями отъ 5 до 11 выражались словами съ окончаніемъ «ина», такъ что 1/7, = седмина, 1/5 пятина, 1/10 = десятина; доли со знаменателями, большими 10, выговаривались съ помощью слова «жеребей», напр., 5/13—пять тринадцатыхъ жеребевъ. Нумерація дробей была прямо заимствована изъ западныхъ источниковъ, въ чемъ авторъ рукописи сейчасъ же сознается:

«буди ти вѣдомо, како ся пишутъ доли въ цифирномъ счетѣ, по нѣмецкимъ землямъ, въ латинѣ и во французской земли.»

Числитель назывался верхнимъ числомъ, а знаменатель исподнимъ.

У Магницкаго (славянская ариѳметика 1703 г.) можно найти яркій примѣръ того, какъ смутно вырисовывалась глава о дробяхъ въ представленіи самихъ авторовъ учебниковъ. Первый разъ упоминаетъ о дробяхъ Магницкій совершенно неожиданно, когда у него идетъ дѣленіе съ остаткомъ. На стр. 17 рѣшается примѣръ 130 : 3, и въ концѣ рѣшенія говорится такъ:

«И умствуй изъ 10 3-хъ: и придеть 3, еже напиши за чертою. А осталось изъ 10, 1, иже есть общій всѣмъ тремъ и пишется послѣди сице: ⅓.»


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Как постепенно дошли люди до настоящей арифметики с таблицей"

Книги похожие на "Как постепенно дошли люди до настоящей арифметики с таблицей" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Всеволод Беллюстин

Всеволод Беллюстин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики с таблицей"

Отзывы читателей о книге "Как постепенно дошли люди до настоящей арифметики с таблицей", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.