Владимир Келер - Сергей Вавилов

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Сергей Вавилов"
Описание и краткое содержание "Сергей Вавилов" читать бесплатно онлайн.
В 1911 году в знак протеста против произвола царского правительства Московский университет покинул великий русский физик П. Н. Лебедев. В подвале дома в Мертвом переулке он организовал физическую лабораторию. Его помощником в этой «подпольной лаборатории» стал Сергей Вавилов.
После Октября С. И. Вавилов беззаветно отдает весь свой талант служению социалистической Родине. Имя С. И. Вавилова, автора пятисот научных работ, приобретает мировую известность. Огромное значение для развития всей советской науки имела деятельность С. И. Вавилова на посту президента Академии наук СССР.
Эта книга — первая популярная биография крупнейшего советского физика.
Возможен такой случай. Вещество, например сернистый цинк, испускает два вида световых лучей: рассеянный свет — результат отражения падающих на него лучей — и собственное свечение. Оба вида лучей одинаково холодные. А вместе с тем по своей природе они глубоко различны.
В люминесценции — и только в люминесценции! — поглощение и испускание света происходит в двух отдельных актах, разделенных во времени.
С. И. Вавилов показал, что наименьшая длительность холодного свечения составляет от одной стомиллионной до одной миллиардной доли секунды. Для неспециалиста это исчезающе ничтожно. Но в мире квантовых явлений миллиардная доля секунды — огромная величина. Она в миллион раз больше продолжительности светового колебания.
Примерно до одной сотой доли (10-2) секунды длится послесвечение спонтанной люминесценции. Прочие два вида связаны со временем гораздо большим: есть тела, которые светятся после прекращения облучения часы, недели и даже годы.
Сейчас повсеместно признается следующее простое определение люминесценции, предложенное Вавиловым на Втором совещании по люминесценции (1944 г.):
«Будем называть люминесценцией избыток над температурным излучением тела в том случае, если это избыточное излучение обладает конечной длительностью примерно от 10–10 секунд и больше».
Мы говорили ранее о люминесценции, вызванной одной причиной: светом, его падением на поглощающее вещество. В этом случае процесс называется фотолюминесценцией.
Но есть и другие способы возбуждения холодного свечения: рентгеновскими лучами (рентгено-люминесценция), механическим дроблением кристаллов (триболюминесценция), химическими процессами (хемилюминесценция), химическими же процессами, но в живых организмах (биолюминесценция), нагреванием в пламени (кандолюминесценция) и так далее.
Любопытно, что в простейших случаях различные способы возбуждения молекул вызывали один и тот же эффект. Вавилов брал, например, кристаллы урановой соли и обрабатывал их разными способами, чтобы вызвать самосвечение: дробил молотком, облучал ультрафиолетовыми лучами, помещал их в поток электронов.
А результат был один и тот же: кристаллы светились после обработки одним и тем же цветом.
Открытие того, что длительность является главным свойством люминесценции, явилось крупным вкладом в науку об этом удивительном явлении природы. Но с особой силой талант С. И. Вавилова проявил себя в выяснении закономерностей, которым подчиняется холодное свечение.
Труд, упорное стремление к цели и гениальные догадки помогли Сергею Ивановичу открыть основной закон спектрального преобразования света в процессах люминесценции.
На протяжении столетия среди физиков, занимавшихся вопросами оптики, было широко распространено так называемое правило Стокса (или закон Стокса). Полученное чисто практически, из прямых наблюдений, оно было сформулировано в 1852 году английским исследователем Джорджем Стоксом как эмпирическое правило и не имело никакого теоретического объяснения. Оно устанавливает отношение излучения, возбуждающего люминесценцию, к самой люминесценции, иначе говоря, позволяет приблизительно предвидеть, как преобразуется поток лучей, падающий на люминесцирующее вещество.
Прежде чем излагать сущность закона Стокса, сделаем несколько разъяснительных замечаний.
Как известно, «обычный» белый свет, озаряющий от солнца видимые нами днем предметы, представляет собою смесь семи основных цветов. Со школьных лет мы, пользуясь простым мнемоническим правилом, запоминаем последовательность этих цветов, разворачиваемую на экране стеклянной призмой: красный — оранжевый — желтый — зеленый — голубой — синий — фиолетовый («каждый — охотник — желает — знать — где — сидят — фазаны»).
Чем ближе цвет к «красному концу спектра», тем длина его волны больше, или, что одно и то же, меньше частота колебания соответствующего излучения. Оно, как говорят, «мягче». Фиолетовый же цвет имеет самую короткую волну, самую высокую частоту колебаний. Фиолетовый «конец» спектра соответствует самым «жестким» лучам видимого света.
И за красным и за фиолетовым концами спектра простираются области невидимых человеческим глазом излучений.
С одной стороны, это «мягкое» инфракрасное излучение. С другой — по мере уменьшения длин волн: ультрафиолетовые, рентгеновские и гамма-лучи. Последние всех «жестче».
С уменьшением длин волн растет энергия фотонов. Фотон видимого света выглядит перед гамма-фотоном — обычно продуктом ядерных процессов — как пуля мелкокалиберной винтовки перед мощнейшим снарядом крепостной артиллерии.
Правило Стокса утверждает, что длина волны люминесценции всегда больше длин волны возбуждающего излучения. Происходит как бы трансформация света, его преобразование от высоких частот к частотам меньшим. Большие кванты падающего света превращаются в малые кванты излучения, а потерян-ная при этом энергия расходуется на нагревание вещества.
Цвет люминесценции поэтому в основном смещен в красную сторону спектра по сравнению с возбуждающим цветом. Сергей Иванович весьма наглядно пояснял это свойство холодного свечения.
Он брал стеклянную пробирку и наливал в нее чистую серную кислоту. Как все так называемые «чистые» жидкости, и серная кислота содержала в себе небольшие органические примеси из воздуха. Эти примеси при возбуждении их светом люминесцируют. Затем ученый включал ртутную лампу и концентрировал ее свет на пробирке с кислотой. На пути пучка устанавливался тот или иной светофильтр.
Возникала чудесная картина, которая неизменно приковывала внимание всех присутствовавших на демонстрации.
Экспериментатор брал черное стекло, пропускающее только ультрафиолетовые лучи. В результате возбуждения возникало голубое свечение.
— Переменим теперь цвет возбуждающего пучка! — объявлял Сергей Иванович и заменял черное стекло синим. Свечение немедленно приобретало зеленый оттенок. Синее стекло заменялось зеленым. Люминесценция становилась очень слабой и приобретала кирпично-коричневый оттенок.
— Видите, — заключал Вавилов, — по мере перемещения цвета возбуждения в красную чаеть спектра в ту же сторону передвигается и цвет холодного свечения. В этом и состоит правило Стокса.
Затем ученый пояснял, что именно на этом свойстве различных невидимых электромагнитных излучений превращаться в видимый свет и основано сейчас практическое применение люминесценции. Рентгеновские лучи заставляют светиться экран, покрытый специальным составом: невидимые ультрафиолетовые лучи, падая на люминофор, превращаются в голубоватое свечение люминесцентной лампы и так далее.
На практике закон, или правило, Стокса, выполняется всегда. Но свет по большей части, в том числе и свет люминесценции, состоит из разных квантов: больших и маленьких — таких, что ближе к фиолетовой стороне спектра, и таких, что ближе к красной стороне. Поэтому физики предпочитают говорить не о «цвете» светового пучка, а его «спектральном составе», чтобы подчеркнуть, что перед ними не совокупность одних и тех же фотонов, а смесь разнородных квантов.
Означает ли практическая справедливость правила Стокса, что все без исключения кванты люминесценции «более красны», чем те, что их породили?
Оказывается, нет.
Бывает (и это тоже было получено из опытов), что наряду с большим количеством «более красных» квантов люминесценции из облучаемого вещества вылетает и небольшое количество «более фиолетовых» квантов.
Выходит, что наряду с обычной — «стоксовой» — люминесценцией существует и так называемая «антистоксовая» люминесценция: явление увеличения некоторого количества квантов в результате люминесцентного процесса.
Явление антистоксовой люминесценции вызывало самый острый интерес. Оно было загадочно, непостижимо и требовало внимания. Долго никто не мог правильно объяснить, почему вообще возникает антистоксовая люминесценция.
Сергей Иванович тщательно изучал вопрос, подойдя к нему не с одной оптической стороны, но и с энергетической.
Не вдаваясь в существо этого сугубо специального вопроса, скажем лишь, что, как думали, если б выход люминесценции был больше единицы, то это нарушило бы второй закон термодинамики (гласящий, что без затрат энергии нельзя отнять тепло от более холодного тела и передать его нагретому телу).
В конечном счете С. И. Вавилов пришел к выводу, что явление люминесценции подчиняется двум правилам:
1) Энергетический выход люминесценции не может быть больше единицы.
2) Энергетический выход так называемой антистоксовой люминесценции должен быть тем меньше, чем необычнее, «фиолетовее» кванты испускания. Говоря иначе, если природа и мирится с парадоксами, то старается, чтобы их было поменьше и чтобы не они определяли процесс в целом. Чем необычнее явление, тем оно реже происходит.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Сергей Вавилов"
Книги похожие на "Сергей Вавилов" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Владимир Келер - Сергей Вавилов"
Отзывы читателей о книге "Сергей Вавилов", комментарии и мнения людей о произведении.