» » » Джонсон Харт - Системное программирование в среде Windows


Авторские права

Джонсон Харт - Системное программирование в среде Windows

Здесь можно скачать бесплатно "Джонсон Харт - Системное программирование в среде Windows" в формате fb2, epub, txt, doc, pdf. Жанр: Программирование, издательство Издательский дом "Вильямс", год 2005. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джонсон Харт - Системное программирование в среде Windows
Рейтинг:
Название:
Системное программирование в среде Windows
Издательство:
Издательский дом "Вильямс"
Год:
2005
ISBN:
5-8459-0879-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Системное программирование в среде Windows"

Описание и краткое содержание "Системное программирование в среде Windows" читать бесплатно онлайн.



Эта книга посвящена вопросам разработки приложений с использованием интерфейса прикладного программирования операционных систем компании Microsoft (Windows 9х, Windows XP, Windows 2000 и Windows Server 2003). Основное внимание уделяется базовым системным службам, включая управление файловой системой, процессами и потоками, взаимодействие между процессами, сетевое программирование и синхронизацию. Рассматривается методика переноса приложений, написанных в среде Win32, в среду Win64. Подробно описываются все аспекты системы безопасности Windows и ее практического применения. Изобилие реальных примеров, доступных также и на Web-сайте книги, существенно упрощает усвоение материала.

Книга ориентирована на разработчиков и программистов, как высокой квалификации, так и начинающих, а также будет полезна для студентов соответствующих специальностей.






Пример: параллельный поиск указанного текстового шаблона

Настало время посмотреть на процессы Windows в действии. Приведенная ниже в качестве примера программа grepMP создает процессы для поиска указанного текстового шаблона в файлах, по одному процессу на каждый файл. Эта программа моделирует UNIX-утилиту grep, хотя используемая нами методика применима к любой программе, которая полагается на стандартный вывод. Рассматривайте программу поиска как "черный ящик" и считайте, что она является просто исполняемой программой, выполнение которой должно контролироваться родительским процессом.

Командная строка программы имеет следующий вид:

grepMP шаблон F1 F2 … FN

Программа 6.1 выполняет следующие виды обработки:

• Для поиска указанного шаблона в каждом из входных файлов, от F1 до FN, используется отдельный процесс, запускающий один и тот же исполняе мый модуль. Для каждого процесса программа создает командную строку такого вида: grep шаблон FK.

• Полю hStdOut структуры STARTUPINFO нового процесса присваивается значение дескриптора временного файла, который определяется как наследуемый.

• Программа организует ожидание завершения всех процессов поиска, используя для этого функцию WaitForMultipleObjects.

• По завершении всех процессов поиска осуществляется поочередный вывод результатов (временных файлов). Вывод временного файла осуществляет процесс, выполняющий утилиту cat (программа 2.3).

• Возможности функции WaitForMultipleObjects ограничиваются лишь максимально допустимым количеством дескрипторов, которое устанавливается значением MAXIMUM_WAIT_OBJECTS (64), поэтому она вызывается многократно.

• Для определения успешности попытки нахождения данным процессом заданного шаблона программа использует код завершения процесса grep.

Порядок обработки файлов программой 6.1 иллюстрируется на рис. 6.3. 

Рис. 6.З. Поиск текстового шаблона в файлах с использованием нескольких процессов


Программа 6.1. grepMP: выполнение параллельного поиска текстового шаблона 

/* Глава 6. grepMP. */

/* Версия команды grep, использующая несколько процессов. */

#include "EvryThng.h"


int _tmain(DWORD argc, LPTSTR argv[])

/* Для выполнения поиска в каждом из файлов, указанных в командной строке, создается отдельный процесс. Каждому процессу предоставляется временный файл в текущем каталоге, в котором сохраняются результаты. */

{

 HANDLE hTempFile;

 SECURITY_ATTRIBUTES StdOutSA = /* Атрибуты защиты для наследуемого дескриптора. */

  {sizeof(SECURITY_ATTRIBUTES), NULL, TRUE};

 TCHAR CommandLine[MAX_PATH + 100];

 STARTUPINFO StartUpSearch, Startup;

 PROCESS_INFORMATION ProcessInfo;

 DWORD iProc, ExCode;

 HANDLE *hProc; /* Указатель на массив дескрипторов процессов. */

 typedef struct {TCHAR TempFile[MAX_PATH];} PROCFILE;

 PROCFILE *ProcFile; /* Указатель на массив имен временных файлов. */

 GetStartupInfo(&StartUpSearch);

 GetStartupInfo(&StartUp);

 ProcFile = malloc((argc – 2) * sizeof(PROCFILE));

 hProc = malloc((argc – 2) * sizeof(HANDLE));

 /* Создать для каждого файла отдельный процесс "grep". */

 for (iProc = 0; iProc < argc – 2; iProc++) {

  _stprintf(CommandLine, _T("%s%s %s"), _T("grep "), argv[1], argv[iProc + 2]);

  GetTempFileName(_T("."), _T("gtm"), 0, ProcFile[iProc].TempFile); /* Для хранения результатов поиска.*/

  hTempFile = /* Этот дескриптор является наследуемым */

   CreateFile(ProcFile[iProc].TempFile, GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, &StdOutSA, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

  StartUpSearch.dwFlags = STARTF_USESTDHANDLES;

  StartUpSearch.hStdOutput = hTempFile;

  StartUpSearch.hStdError = hTempFile;

  StartUpSearch.hStdInput = GetStdHandle(STD_INPUT_HANDLE);

  /* Создать процесс для выполнения командной строки. */

  CreateProcess(NULL, CommandLine, NULL, NULL, TRUE, 0, NULL, NULL, &StartUpSearch, &ProcessInfo);

  /* Закрыть ненужные дескрипторы. */

  CloseHandle(hTempFile);

  CloseHandle(ProcessInfo.hThread);

  hProc[iProc] = ProcessInfo.hProcess;

 }

 /* Выполнить все процессы и дождаться завершения каждого из них. */

 for (iProc = 0; iProc < argc – 2; iProc += MAXIMUM_WAIT_OBJECTS) WaitForMultipleObjects( /* Разрешить использование достаточно большого количества процессов */

  min(MAXIMUM_WAIT_OBJECTS, argc – 2 – iProc), &hProc [iProc], TRUE, INFINITE);

 /* Переслать результирующие файлы на стандартный вывод с использованием утилиты cat */ 

 for (iProc = 0; iProc < argc – 2; iProc++) {

  if (GetExitCodeProcess(hProc[iProc], &ExCode) && ExCode==0) {

   /* Обнаружен шаблон — Вывести результаты. */

   if (argc > 3) _tprintf(_T("%s:\n"), argv [iProc + 2]);

   fflush(stdout); /* Использование стандартного вывода несколькими процессами. */

   _stprintf(CommandLine, _T("%s%s"), _Т("cat "), ProcFile[iProc].TempFile);

   CreateProcess(NULL, CommandLine, NULL, NULL, TRUE, 0, NULL, NULL, &StartUp, &ProcessInfo);

   WaitForSingleObject(ProcessInfo.hProcess, INFINITE);

   CloseHandle(ProcessInfo.hProcess);

   CloseHandle(ProcessInfo.hThread);

  }

  CloseHandle(hProc [iProc]);

  DeleteFile(ProcFile[iProc].TempFile);

 }

 free(ProcFile);

 free(hProc);

 return 0;

Процессы в многопроцессорной среде

В программе 6.1 процессы и их основные (и только эти) потоки выполняются практически полностью независимо друг от друга. Единственная зависимость между ними проявляется лишь в конце выполнения родительского процесса, поскольку он ожидает завершения выполнения каждого из них, чтобы перейти к последовательной обработке выходных файлов. Поэтому в SMP-системах планировщик Windows может и будет обеспечивать параллельное выполнение потоков процесса на нескольких независимых процессорах. В результате этого производительность, если оценивать ее по времени выполнения всей программы, значительно повышается, причем для этого с вашей стороны не требуется предпринимать никаких действий.

Типичные результаты тестирования производительности приведены в приложении В. Ввиду выполнения программой ряда вспомогательных операций, а также необходимости последовательного вывода результатов, зависимость производительности от количества процессоров не является линейной. Тем не менее, улучшение производительности налицо, и это автоматически обеспечивается организацией программы, которая предусматривает передачу выполнения независимых вычислительных задач независимым процессам.

Вместе с тем, существует возможность привязки процессов к определенным процессорам, что позволяет всегда быть уверенным в том, что другие процессоры остаются свободными и их можно использовать для решения каких-либо иных, критических задач. Это достигается за счет применения маски родства процессора (processor affinity mask) (см. главу 9) в объекте задачи. Объекты задач (job objects) описываются в одном из следующих разделов настоящей главы. 

Наконец, внутри процесса можно создавать независимые потоки, и для этих потоков также будет спланировано выполнение с использованием отдельных процессоров SMP для каждого из них. Связь между использованием потоков и показателями производительности обсуждается в главе 7.

Временные характеристики процесса

Воспользовавшись функцией GetProcessTimes, которая в Windows 9x отсутствует, можно получить различные временные характеристики процесса, а именно: истекшее время (elapsed time), время, затраченное ядром (kernel time), и пользовательское время (user time). 

BOOL GetProcessTimes(HANDLE hProcess, LPFILETIME lpCreationTime, LPFILETIME lpExitTime, LPFILETIME lpKernelTime, LPFILETIME lpUserTime) 

Дескриптор процесса может ссылаться как на процесс, который продолжает выполняться, так и на процесс, выполнение которого прекратилось. Вычитая время создания процесса (creation time) из времени завершения процесса (exit time), мы получаем истекшее время, как показано в следующем примере. Тип данных FILETIME является 64-битовым; для вычисления указанной разности объедините переменную этого типа с переменной тип LARGE_INTEGER в структуру типа union. Ранее преобразование и отображение отметок времени файлов было продемонстрировано в главе 3 на примере программы lsw.

Функция GetThreadTimes аналогична только что описанной, но требует указания дескриптора потока в качестве параметра. Управлению потоками посвящена глава 7.

Пример: временные характеристики процессов

Наш следующий пример (программа 6.2) представляет собой команду timep (от time print — вывод временных параметров), аналогичную UNIX-команде time (поскольку команда time поддерживается процессором командной строки, мы должны использовать для нашей команды другое имя). Программа позволяет вывести все три временные характеристики, однако в Windows 9x будет доступно лишь истекшее время процесса.

Одним из возможных применений этой команды является сравнительный анализ времени выполнения и эффективности различных версий функций копирования и преобразования файлов из ASCII в Unicode, реализованных в предыдущих главах.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Системное программирование в среде Windows"

Книги похожие на "Системное программирование в среде Windows" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джонсон Харт

Джонсон Харт - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джонсон Харт - Системное программирование в среде Windows"

Отзывы читателей о книге "Системное программирование в среде Windows", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.