» » » » Руперт Шелдрейк - Новая наука о жизни


Авторские права

Руперт Шелдрейк - Новая наука о жизни

Здесь можно скачать бесплатно "Руперт Шелдрейк - Новая наука о жизни" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство «РИПОЛ классик», год 2005. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Руперт Шелдрейк - Новая наука о жизни
Рейтинг:
Название:
Новая наука о жизни
Издательство:
«РИПОЛ классик»
Жанр:
Год:
2005
ISBN:
5-7905-3692-1
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Новая наука о жизни"

Описание и краткое содержание "Новая наука о жизни" читать бесплатно онлайн.



Книга Р. Шелдрейка по праву считается на Западе сенсационной. Переведенная на многие языки мира, работа Шелдрейка содержит принципиально новое объяснение феномена жизни, основывающееся не на редукционистско-механическом подходе к объяснению явлений бытия, а на признании существования в природе духовного, трансцендентального жизненного начала.

Книга предназначена для читателей, интересующихся теоретическими проблемами естествознания (биологии, биохимии, физики), а также психологии и философии.






Рис. 5. Часть «эпигенетического ландшафта», иллюстрирующая концепцию хреоды как канализированного пути изменения (из Waddington, 1957)


К. X. Уоддингтон предложил более широкое толкование морфогенетических полей, включив в рассмотрение временной аспект развития. Он назвал эту новую концепцию хреодой (от греческого chrē — необходимо и hodos — путь) и иллюстрировал ее с помощью простого трехмерного «эпигенетического ландшафта» (рис. 5).[80] В этой модели путь, по которому движется шарик, когда он катится вниз, соответствует истории развития определенной части яйца. По мере развития эмбриологии появляются разветвляющиеся серии альтернативных путей развития, представленные «долинами». Они соответствуют путям развития различных типов органа, ткани и клетки. В организме они вполне различимы: например, почка и печень имеют различные структуры и не переходят друг в друга через серию промежуточных форм. Развитие канализировано по направлению к определенным конечным точкам. Генетические изменения, или пертурбации, в окружающей среде могут «толкнуть» направление развития (представленное путем, по которому движется шарик) из глубины «долины» на соседний «холм», но, если оно не будет переброшено через вершину холма в соседнюю долину, процесс развития найдет путь назад. Он вернется не к начальной точке, а к более поздней позиции на канализованном пути изменений. Это представляет регуляцию.

Концепция хреоды очень близка идее морфогенетических полей, но она делает явным измерение времени, которое в морфогенетических полях присутствует в неявном виде.

Недавно обе эти концепции были существенно продвинуты математиком Рене Томом, который сделал попытку создать математическую теорию, описывающую не только морфогенез, но также поведение и язык.[81] Его главной задачей было найти подходящий математический формализм для этих проблем, которые до сих пор не поддавались математической обработке. Конечная цель состоит в том, чтобы построить математические модели, соответствующие процессам развития настолько близко, насколько это возможно. Эти модели должны быть топологические, скорее, качественные, чем количественные, и не должны зависеть от какой-либо конкретной схемы причинного объяснения: «Одна существенная особенность применения нами локальных моделей состоит в том, что мы ничего не подразумеваем под "конечной природой реальности"; даже если она когда-либо обнаружится посредством анализа, слишком сложного для описания, только часть ее проявления — так называемые «наблюдаемые» (observ-ables) в конечном счете пригодны для макроскопического описания системы. Фазовое пространство нашей динамической модели определено с использованием лишь таких «наблюдаемых» и без ссылок на какие-либо более или менее хаотические базовые структуры».[82]

Проблема с этим подходом состоит в том, что он является по существу описательным; он мало что дает для объяснения морфогенеза. Это характерно для всех существующих организмических теорий морфогенеза. Сравним, например, хреоду Уоддингтона и энтелехию Дриша. Обе заключают в себе идею о том, что развитие направляется и располагается (канализируется) в пространстве и времени чем-то, что само не может рассматриваться как принадлежащее определенному месту и времени; оба видят это что-то как содержащее в самом себе конец и цель процесса развития, и вследствие этого оба предлагают способ объяснения регуляции. Главное различие между ними состоит в том, что Дриш пытался разъяснить, как предложенный им процесс может работать на практике, а Уоддингтон этого не делал. Концепция хреоды была менее уязвима для критики, потому что оставалась столь неопределенной.[83] Фактически, Уоддингтон рассматривал концепции хреоды и морфогенетических полей как «по существу способ, удобный для описания».[84] Подобно многим другим органицистам, он отрицал, что предлагает оперировать чем-либо другим, нежели известными физическими причинами.[85] Однако не все органицисты это отрицали, некоторые оставляли вопрос открытым. Такое явно уклончивое поведение можно проиллюстрировать следующим обсуждением морфогенетического поля у Б. К. Гудвина:


«Один аспект поля состоит в том, что на него могут влиять электрические силы. Было обнаружено, что другие развивающиеся и регенерирующие организмы имеют интересную и значительную электрическую сеть, но я не хотел бы предположить, что морфогенетическое поле имеет по существу электрическую природу. Химические вещества также влияют на полярность и другие пространственные аспекты развивающихся организмов; но опять-таки я не хотел бы делать отсюда вывод, что морфогенетическое поле имеет по существу химическую или биохимическую природу. Мое убеждение состоит в том, что исследование этого поля должно проводиться при допущении, что оно имеет природу какую-либо из упомянутых, или никакую из них, или все сразу; но я считаю, что, несмотря на агностицизм в отношении его материальной природы, оно играет главную роль в процессе развития».[86]


Открытость этой позиции делает ее наиболее многообещающей отправной точкой для построения обстоятельной организмической теории морфогенеза. Но очевидно, что, если морфогенетические поля считаются полностью объяснимыми с помощью известных физических принципов, они представляют собой не что иное, как неясную терминологию, наложенную на усложненную версию механистической теории. Только если допускается, что они играют причинную роль, не признанную физикой сегодня, может быть построена теория, доступная проверке. Такая возможность исследуется в следующих главах.

Глава 3. Причины формы

3.1. Проблема формы

Не очевидно, что форма вообще представляет какую-то проблему. Окружающий нас мир полон форм, мы узнаем их в каждом акте восприятия. Но легко забываем, что существует глубокая пропасть между этим аспектом нашего опыта, который мы воспринимаем просто как само собой разумеющееся, и количественными факторами, которыми занимается физика: массой, моментом, энергией, температурой, давлением, электрическим зарядом и т. д.[87]

Соотношения между количественными факторами физики могут быть выражены математически, и физические изменения — описаны с помощью уравнений. Создание этих уравнений возможно, потому что сохраняются фундаментальные физические величины в соответствии с принципами сохранения массы и энергии, момента, электрического заряда и т. д.: общее количество массы и энергии, момента, электрического заряда и некоторых других величин перед данным физическим изменением равно их общему количеству после него. Но форма не входит в эти уравнения: она не является векторной или скалярной величиной и она не сохраняется. Например, если букет цветов был брошен в печь и превратился в пепел, общее количество вещества и энергии остается тем же, но форма цветов просто исчезает.

Физические величины можно измерить инструментами с высокой степенью точности. Но формы не могут быть измерены в количественных единицах, да этого и не нужно даже ученым. Ботаник не измеряет различие между двумя видами по показаниям шкалы прибора; и энтомолог не распознает бабочек с помощью какого-либо механизма, как и анатом — кости и гистолог — клетки. Все эти формы распознаются непосредственно. Затем образцы растений сохраняются в гербариях, бабочки и кости — в шкафах, а клетки — на предметных стеклах микроскопа. Как формы, они просто являются сами собой, их нельзя свести к чему-либо еще. Описание и классификация форм фактически есть главная задача многих областей науки; даже в такой точной науке, как химия, главная цель состоит в определении форм молекул, представляемых в виде диаграмм как двумерные «структурные формулы» или как трехмерные модели типа «шарики и палочки».

Формы почти всех простейших систем могут быть представлены только визуально, в виде фотографий, рисунков, диаграмм или моделей. Их нельзя представить математически. Даже наиболее продвинутые топологические методы еще недостаточно разработаны, чтобы давать математические формулы, скажем, жирафа или дуба. Некоторые из новых методов, разработанных Томом и другими, со временем, возможно, могут быть использованы для решения подобных проблем, но здесь есть математические трудности не только практического, но и принципиального характера.[88]

Если простое описание даже простейших статических форм представляет математическую проблему неимоверной сложности, то описание изменения формы, или морфогенеза, еще труднее. Это предмет созданной Томом «теории катастроф», которая классифицирует и описывает в общих терминах возможные типы изменения форм, или «катастрофы». Он применяет свою теорию к рассмотрению проблем морфогенеза путем конструирования математических моделей, в которых конец или цель морфогенетического процесса — конечная форма представлена аттрактором в морфогенетическом поле. Он постулирует, что каждый объект, или физическая форма, может быть представлен таким аттрактором и что весь морфогенез «может быть описан через исчезновение аттракторов, представляющих начальные формы, и их замещение путем захвата аттракторами, представляющими конечные формы».[89] Для разработки топологических моделей, которые соответствуют частным морфогенетическим процессам, найдены формулы в результате сочетаний проб и ошибок с вдохновенными догадками. Если математическое выражение дает слишком много решений, в него должны быть введены ограничения; а если функция слишком ограничена, вместо нее используется более общая функция. С помощью таких методов Том надеется со временем получить возможность построить топологические выражения, которые соответствуют деталям реальных морфогенетических процессов. Но даже если эта надежда оправдается, такие модели, вероятно, не позволят делать количественные предсказания. Их главная ценность в том, что они могут привлечь внимание к формальным аналогиям между различными типами морфогенеза.[90] На первый взгляд для этого топологического подхода кажется наиболее приемлемым математический формализм теории информации. Но на самом деле область применения теории информации очень ограниченна. Изначально она была разработана инженерами телефонных устройств в связи с передачей посланий от источника через канал к приемнику; она занималась главным образом тем, как характеристики канала влияют на количество информации, которая может быть передана за данное время. Один из основных результатов состоит в том, что в закрытой системе приемнику не может быть передано информации больше, чем содержалось в источнике, хотя форма информации может быть изменена, например, от точек и тире азбуки Морзе можно перейти к словам. Информационное содержание события определяется не тем, что случилось, но лишь по его отношению к тому, что могло бы случиться вместо него. Для этого обычно используются бинарные символы, и тогда информационное содержание передаваемого образа определяется числом положительных или отрицательных решений, которое требуется для выбора класса этого образа среди известного числа классов.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Новая наука о жизни"

Книги похожие на "Новая наука о жизни" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Руперт Шелдрейк

Руперт Шелдрейк - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Руперт Шелдрейк - Новая наука о жизни"

Отзывы читателей о книге "Новая наука о жизни", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.