Эмилия Александрова - Стол находок утерянных чисел

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Стол находок утерянных чисел"
Описание и краткое содержание "Стол находок утерянных чисел" читать бесплатно онлайн.
Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.
Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку. Это еще одна из книг этих авторов.
После этого девочка… виноват, Главный секретарь операции «Пуся» открыла свой блокнот, а заодно и конференцию, потому что ПРОМОККМ-4 удалился на заслуженный отдых, и в нашем распоряжении оказалось пятнадцать минут тишины.
Сначала мы освежили в памяти список примет: 1) Все цифры в номере разные. 2) В номере нет нулей. 3) Номер чётный. 4) Номер делится на 11, причём сумма цифр, стоящих на нечётных местах, равна сумме цифр, стоящих на чётных. 5) Последние три цифры номера — последовательно возрастающие. И наконец 6) Значность номера — число совершенное и в то же время треугольное.
Окинув намётанным глазом это обширное хозяйство, я сразу сообразил, что самая важная примета — шестая, последняя, поскольку касается она значности числа. Выходит, с неё и надо начинать. Но прежде я напомнил участникам конференции об одной особенности совершенных чисел. Они растут как на дрожжах! Если первое из них — 6 —число однозначное, второе — 28 — двузначное, то третье — 496 — уже трёхзначное, а последнее из известных совершенных чисел записывается более чем шестью тысячами знаков!
Совершенно ясно, что лотерейный номер не может быть таким длинным. Речь, стало быть, может идти только о двух первых совершенных числах, которые, кстати, оба треугольные. Но второе из них — 28 — придётся отмести. Почему? Да потому, что в числе, состоящем из двадцати восьми цифр, какие-то непременно повторяются. А это противоречит первой примете: все цифры в номере разные. Остаётся число 6. И стало быть, номер — шестизначный. Вот и всё, что мы можем пока извлечь из наших многочисленных признаков.
— Негусто, — вздохнул Главный те рятель, уныло допивая остывший кофе.
— Но и не так уж мало, — бодро возразил я. — Всё-таки некоторые ассоциации привели нас к существенным результатам. И потому — двинемся за новыми!
Двинуться, однако, не удалось, потому что в это время к нам подошёл тот самый человек, который расшифровал название ансамбля.
— Извините великодушно, — сказал он, — у вас такая удивительная собака! Вот я и подумал, что вы, должно быть, тоже любите математику…
— Конечно, любим! А иногда и знаем, — сказала девочка, лукаво взглянув на меня.
— Очень, очень приятно! — обрадовался незнакомец. — Недаром я сразу почувствовал, что здесь мне помогут. Видите ли, я дрессировщик. Выступаю с группой обезьян. Недавно я выписал для них бананы. Мои обезьяны без бананов не могут, и я всегда делаю большие запасы. На сей раз поставщик оказался шутником. Он заявил, что числа отправленных бананов не помнит. Знает лишь, что оно было наименьшим из возможных, оканчивается четвёркой, и что эта четвёрка, будучи переставлена в начало числа, увеличит его вчетверо. Так вот, если я отгадаю, сколько штук бананов отправлено, он обязуется посылать мне каждый месяц столько же, и мои обезьяны будут обеспечены бананами до скончания века. Не поможете ли мне узнать, что это за число?
— С величайшим удовольствием! — отвечал я. — Находить числа — моя святая обязанность. Правда, ваш случай не из лёгких. Но у меня есть один приём, и он нас выручит. Итак, мы ищем число с четвёркой на конце, и эта четвёрка, очутившись в начале числа, увеличит его вчетверо. Так узнаем сперва зто учетверённое число. Попробуем неизвестное нам число отправленных бананов умножить на 4. «Как?! — воскликнете вы. — Как же это возможно? Ведь оно неизвестное!» Да, отвечу я, но не совсем. У него есть кончик — четвёрка. Ухватимся за этот кончик и попробуем вытащить всё число. Для начала умножим четвёрку на 4, чтобы получить последнюю цифру учетверённого числа. 4x4=16. Вот вам и число единиц в новом числе: это 6. Причём в уме у нас остаётся единица, которая перейдёт в следующий разряд. А теперь… Теперь вступает в силу мой приём. Умножим последнюю цифру учетверённого числа 6 на 4, не забыв прибавить к произведению единицу. Получим 25: 6x4=24; 24+1=25. Вот у нас появилась и вторая цифра с конца — 5, при этом 2 остаётся в уме. Снова умножаем 5 на 4 и прибавляем к произведению двойку. Получаем 22: 5x4=20; 20+2=22. Вот вам и третья цифра с конца — 2, а два придерживаем в уме. Снова умножаем 2 на 4, прибавляем двойку и получаем 10. Теперь у нас уже есть четвёртая цифра с конца — 0, да единица в уме. Умножаем 0 на 4, затем прибавляем к произведению единицу и получаем 1: 0x4=0; 0+1=1. Это уже пятая цифра с конца. И наконец, умножив 1 на 4, получаем шестую с конца цифру — 4. Так, шаг за шагом, мы вытащили из неизвестности учетверённое число бананов 410256. Остаётся разделить его на четыре, чтобы найти искомое. Но делать это незачем. Ведь по условию, вернув четвёрку в конец числа, мы его сделаем вчетверо меньше. И, значит, число это — 102564. На всякий случай проверим: умножим 102564 на 4 и получим… 410256. Ошибки нет. Число найдено. И довольно-таки солидное число. Похоже, обезьяны ваши с голода не умрут…
Дрессировщик был вне себя от радости. Он превозносил и меня, и мой способ, и щедрость своего поставщика, который собирается заплатить такой дорогой ценой за решение задачи.
Но я сказал, что поставщик его оказался не только щедрым, но и милосердным. Ведь если бы в условии задачи не было сказано, что надо найти наименьшее из возможных чисел, так пришлось бы нам вычислять число посланных бананов до бесконечности. Потому что 102564 — это период бесконечного целого периодического числа. И, продолжив наше умножение тем же способом, мы снова и снова получим те же цифры, то же число. Нарастая справа налево, оно будет бесконечно повторяться и всегда при этом удовлетворять условию задачи. Потому что, каким бы длинным оно ни было, из скольких бы периодов не состояло, четвёрка, переставленная с конца в начало, непременно увеличит его вчетверо.
И тут меня перебила девочка.
— Какое совпадение! — ахнула она. — Какое удивительное совпадение! 102564 — это ведь то самое число, которое показывали в цирке воздушные гимнасты! Только там оно было периодом дроби, а здесь — целого числа…
Вот как! А я и не заметил… Впрочем, если это и совпадение, так чисто житейское, но никак не математическое. Почему? Да потому, что в том случае, когда последняя цифра числа, переставленная в начало, увеличивает его во столько же раз, число всегда будет одновременно периодом целого периодического числа и периодом дроби…
Девочку это слегка разочаровало, и я в виде утешения сказал, что таких чисел всего 9 — столько же, сколько цифр в нашей, десятичной системе счисления (нуль в данном случае не в счёт), и ничто ей не мешает вычислить тем же способом все остальные.
Но здесь произошло кое-что впрямь неожиданное. Одно из тех внезапных озарений, которые знакомы всем, кто занимается числами. И причиной его была девочка: ведь это она напомнила мне о цирке! Перед глазами у меня снова всплыли воздушные гимнасты и светящееся выражение «4:39 = 0, ». Потом оно преобразовалось, превратилось в дробь «4/39=0, » и я внезапно понял, что знаменатель дроби 39 есть не что иное как удесятерённый числитель минус единица
Оставалось подставить в равенство после запятой известные мне цифры 102564 — и новый, к тому же наипростейший способ нахождения подобных чисел был, как говорится, у меня в кармане! Надо лишь последнюю цифру разделить на её удеся-терённъе значение минус единица. Если это 2 — так на 20—1, если 3 — на 30—1 и так далее…
Сообщение моё привело в восторг всех, особенно дрессировщика. Он снова рассыпался в похвалах, сказал, что не знает, как отблагодарить меня, хотел было преподнести мне обезьяну, да передумал — обезьяны слишком проказливы… И вдруг его тоже озарило!
— Знаете что, — сказал он, — не позаниматься ли мне с вашим щенком? Из него может выйти незаурядный циркач!
Он не успел договорить: Пуся взвизгнул, одним прыжком очутился на руках у дрессировщика и стал осыпать его влажными собачьими поцелуями.
— Вы угадали его заветное желание, — объяснила девочка, — но лишь наполовину. Он мечтает выступать вместе со мной.
— Тем лучше, — засмеялся дрессировщик. — Вместо одного ученика у меня появилось два.
Приступить к занятиям решено было по завершении операции «Пуся». После этого мы распростились с дрессировщиком, вышли из кафе «Тарарам» и, уже никуда не сворачивая, направились во Дворец пионеров.
ФИЛОСОФИЯ НА ХОДУ
По дороге мне вздумалось пофилософствовать.
— Что ни говорите, — сказал я, — жизнь полна случайностей. Если бы не история с пропавшим билетом, я бы, скорей всего, так и не попал во Дворец пионеров, да ещё в день его юбилея. А ведь когда-то я бывал там каждую неделю, и всякий раз с нетерпением ждал среды. Потому что именно по средам занимался кружок «Весёлые математики». Помню, в одно и то же время с весёлыми математиками за стеной репетировал хор «Весенние пташки». И когда он очень уж распевался, мы засылали туда парламентёра. Случалось, парламентёром выбирали меня. И вот я шёл усмирять зарвавшихся «пташек», и мне даже в голову не приходило, что среди них есть девочка, которая когда-нибудь станет проявлять мыслеграфии и помогать мне находить пропавшие числа…
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Стол находок утерянных чисел"
Книги похожие на "Стол находок утерянных чисел" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Эмилия Александрова - Стол находок утерянных чисел"
Отзывы читателей о книге "Стол находок утерянных чисел", комментарии и мнения людей о произведении.