Михаил Филиппов - Блез Паскаль. Его жизнь, научная и философская деятельность

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Блез Паскаль. Его жизнь, научная и философская деятельность"
Описание и краткое содержание "Блез Паскаль. Его жизнь, научная и философская деятельность" читать бесплатно онлайн.
Эти биографические очерки были изданы около ста лет назад в серии «Жизнь замечательных людей», осуществленной Ф.Ф.Павленковым (1839–1900). Написанные в новом для того времени жанре поэтической хроники и историко-культурного исследования, эти тексты сохраняют ценность и по сей день. Писавшиеся «для простых людей», для российской провинции, сегодня они могут быть рекомендованы отнюдь не только библиофилам, но самой широкой читательской аудитории: и тем, кто совсем не искушен в истории и психологии великих людей, и тем, для кого эти предметы – профессия.
О “великих открытиях” кавалера де Мере, послуживших основою для работ ученых, которых де Мере не умел назвать даже по имени, будет речь ниже. Не мешает привести отзыв о переписке Мере с Паскалем, принадлежащий великому философу Лейбницу, так как это суждение философа, бывшего почти современником Паскаля, прекрасно выясняет отношение кавалера де Мере к знаменитому математику.
“Я едва удерживался от смеха, – писал Лейбниц, – когда увидел, в каком тоне пишет кавалер де Мере Паскалю. Вижу, что кавалер понял характер Паскаля, сообразив, что этот великий гений имел свои неровности, делавшие его часто слишком чувствительным к утрированным спиритуалистическим рассуждениям, вследствие чего он не раз временно разочаровывался в самых солидных знаниях. Де Мере пользовался этим, чтобы говорить с Паскалем сверху вниз. Кажется, он подсмеивается над Паскалем, как делают светские люди, обладающие избытком остроумия и недостатком знаний. Они хотят нас убедить, что то, чего они не понимают, есть пустяк. Надо бы послать этого кавалера в школу к Робервалю. Правда, у де Мере были большие способности даже к математике. Я узнал, впрочем, от Де Биллета, друга Паскаля, о знаменитом открытии, которым так хвастает этот кавалер. Будучи страстным игроком, он впервые придумал задачу об оценке пари. Предложенный им вопрос породил прекрасные исследования Ферма, Паскаля и Гюйгенса, в которых Роберваль не мог ничего понять… Но то, что кавалер де Мере пишет против бесконечной делимости, доказывает, что автор письма еще слишком далек от высших мировых сфер, и, по всей вероятности, прелести здешнего мира, о которых он также пишет, не дали ему достаточно времени для приобретения права гражданства в более высокой области”.
За кавалером де Мере история математики должна признать ту несомненную заслугу, что он страстно любил игру в кости. Не будь этого, теория вероятностей могла бы опоздать на целое столетие.
Как страстный игрок де Мере чрезвычайно интересовался следующим вопросом: каким образом разделить ставку между игроками в случае, если игра не была окончена? Решение этой задачи совершенно не поддавалось всем известным до того времени математическим методам.
Математики привыкли иметь дело с вопросами, допускающими вполне достоверное, точное или, по крайней мере, приблизительное решение. Здесь предстояло решить вопрос, не зная, который из игроков мог бы выиграть в случае продолжения игры? Ясно, что речь шла о задаче, которую надо было решить на основании степени вероятности выигрыша или проигрыша того или другого игрока. Но до тех пор ни одному математику еще не приходило в голову вычислять события только вероятные. Казалось, что задача допускает лишь гадательное решение, то есть что делить ставку надо совершенно наудачу, например, метанием жребия, определяющего, за кем должен остаться окончательный выигрыш.
Необходим был гений Паскаля и Ферма, чтобы понять, что такого рода задачи допускают вполне определенные решения и что “вероятность” есть величина, доступная измерению. Предположим, что требуется узнать, как велика вероятность вынуть белый шар из урны, содержащей два белых шара и один черный. Всех шаров три, и белых шаров вдвое больше, чем черных. Ясно, что правдоподобнее предположить при доставании наудачу, что будет вытянут белый шар, нежели черный. Может как раз случиться, что мы вынем черный шар; но все же мы вправе сказать, что вероятность этого события меньше, чем вероятность вынуть белый. Увеличивая число белых шаров и оставляя один черный, легко видеть, что вероятность вынуть черный шар будет уменьшаться. Так, если бы белых шаров было тысяча, а черных – один и если бы кому-либо предложили побиться об заклад, что будет вынут черный шар, а не белый, то только сумасшедший или азартный игрок решился бы поставить на карту значительную сумму в пользу черного шара.
Уяснив себе понятие об измерении вероятности, легко понять, каким образом Паскаль решил задачу, предложенную де Мере. Очевидно, что для вычисления вероятности надо узнать отношение между числом случаев благоприятных событию и числом всех возможных случаев (как благоприятных, так и неблагоприятных). Полученное отношение и есть искомая вероятность. Так, если белых шаров сто, а черных, положим, десять, то всех “случаев” будет сто десять, из них десять в пользу черных шаров. Поэтому вероятность вынуть черный шар будет 10 к 110, или 1 к 11.
Две задачи, предложенные кавалером де Мере, сводятся к следующему. Первая: как узнать, сколько раз надо метать две кости в надежде получить наибольшее число очков, то есть двенадцать; другая: как распределить выигрыш между двумя игроками в случае неоконченной партии. Первая задача сравнительно легка: надо определить, сколько может быть различных сочетаний очков; лишь одно из этих сочетаний благоприятно событию, все остальные неблагоприятны, и вероятность вычисляется очень просто. Вторая задача значительно труднее. Обе были решены одновременно в Тулузе математиком Ферма и в Париже Паскалем. По этому поводу в 1654 году между Паскалем и Ферма завязалась переписка, и, не будучи знакомы лично, они стали лучшими друзьями. Ферма решил обе задачи посредством придуманной им теории сочетаний. Решение Паскаля было значительно проще: он исходил из чисто арифметических соображений. Нимало не завидуя Ферма, Паскаль, наоборот, радовался совпадению результатов и писал: “С этих пор я желал бы раскрыть перед вами свою душу, так я рад тому, что наши мысли встретились. Я вижу, что истина одна и та же в Тулузе и в Париже”.
Приводим вкратце решение Паскаля. Предположим, говорит Паскаль, что играют два игрока и что выигрыш считается окончательным после победы одного из них в трех партиях. Предположим, что ставка каждого игрока составляет 32 червонца и что первый уже выиграл две партии (ему не хватает одной), а второй выиграл одну (ему не хватает двух). Им предстоит сыграть еще партию. Если ее выиграет первый, он получит всю сумму, то есть 64 червонца; если второй, у каждого будет по две победы, шансы обоих станут равны, и в случае прекращения игры каждому, очевидно, надо дать поровну.
Итак, если выиграет первый, он получит 64 червонца. Если выиграет второй, то первый получит лишь 32. Поэтому, если оба согласны не играть предстоящей партии, то первый вправе сказать: 32 червонца я получу во всяком случае, даже если я проиграю предстоящую партию, которую мы согласились признать последней. Стало быть, 32 червонца мои. Что касается остальных 32 – может быть, их выиграю я, может быть, и вы; поэтому разделим эту сомнительную сумму пополам. Итак, если игроки разойдутся, не сыграв последней партии, то первому надо дать 48 червонцев, или же 3/4 всей суммы, второму 16 червонцев, или у, из чего видно, что шансы первого из них на выигрыш втрое больше, чем второго (а не вдвое, как можно было бы подумать при поверхностном рассуждении).
Нетрудно видеть, что теория вероятностей имеет огромное применение. Посредством нее астрономы определяют вероятные ошибки наблюдений, артиллеристы вычисляют вероятное количество снарядов, могущих упасть в определенном районе, физики оценивают число частиц газа, ударяющих о стенки сосуда, страховые общества – размер премий и процентов, уплачиваемых при страховании жизни и имущества. Во всех случаях, когда явления чересчур сложны, чтобы допустить абсолютно достоверное предсказание, теория вероятностей дает возможность получить результаты, весьма близкие к реальным и вполне годные на практике.
Работы над теорией вероятностей привели Паскаля к замечательному математическому открытию, еще и теперь не вполне оцененному. Он составил так называемый арифметический треугольник, позволяющий заменять многие весьма сложные алгебраические вычисления простейшими арифметическими действиями.
Чтобы получить треугольник Паскаля, напишем горизонтальный ряд, составленный из единицы, повторенной сколько угодно раз: 1, 1, 1, 1 и т. д., и такой же вертикальный ряд. Дальнейшие числа треугольника получаются так: любое число треугольника Паскаля равно сумме числа стоящего над ним, с числом, стоящим слева от него. Так, например, написав сначала
вставляем затем число 2 таким образом:
потому что 2=1+1. Продолжая подобные действия, нетрудно составить, например, следующий треугольник Паскаля:
Первая строка (и первый столбец) состоит из единицы, повторенной несколько раз; вторая строка (и столбец) – из натуральных чисел 1, 2, 3, 4, 5 и т. д.; третья строка (и столбец) – из так называемых треугольных чисел 1, 3, 6, 10 и т. д.; в четвертой строке (и столбце) стоят пирамидальные числа 1, 4, 10 и т. д.
Чтобы понять смысл этих названий, предположим, что требуется узнать сразу, сколько ядер находится в куче, имеющей вид треугольника, например, такой:
Сначала положено 1 ядро, потом 2, 3, 4 и т. д. Словом, имеем ряд натуральных чисел. Легко убедиться, что искомая сумма равна тому числу в треугольнике Паскаля, которое стоит непосредственно под последним из слагаемых натуральных чисел. Так, в нашем примере под числом 4 стоит 10, и действительно 1+2+3+4=10. Число 10 обозначает число ядер в треугольной кучке, стороны которой содержат по 4 ядра. Числа 1, 3, 6, 10 называются “треугольными” числами.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Блез Паскаль. Его жизнь, научная и философская деятельность"
Книги похожие на "Блез Паскаль. Его жизнь, научная и философская деятельность" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Михаил Филиппов - Блез Паскаль. Его жизнь, научная и философская деятельность"
Отзывы читателей о книге "Блез Паскаль. Его жизнь, научная и философская деятельность", комментарии и мнения людей о произведении.