Эмилия Александрова - Искатели необычайных автографов

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Искатели необычайных автографов"
Описание и краткое содержание "Искатели необычайных автографов" читать бесплатно онлайн.
Любитель изящной словесности Филарет Филаретович Филаретов, или сокращенно Фило, и признающий только красоту математики Матвей Матвеевич Матвеев, или сокращенно Мате, отправляются в путешествие по прошедшим эпохам в поисках автографов великих писателей и математиков. Каково же их удивление, когда оказывается, что они разыскивают одних и тех же людей! На страницах этой удивительной книги вы повстречаетесь с Омаром Хайямом, Блезом Паскалем, Эратосфеном, Фибоначчи, Пифагором и многими другими великими людьми, которые, возможно, предстанут в новом, незнакомом для вас качестве. Немаловажно, что книга написана простым понятным языком и не требует специальных знаний в области математики.
— Видите, — говорит Мате, — все, стало быть, зависит от сферы применения. То же и с методами двух «Д». Удивительно красивый, хоть и сложноватый, способ Дезарга имеет неоспоримые преимущества при решении задач практических: в землемерии, в инженерном деле… Кстати сказать, Дезарг и сам отличный военный инженер.
— Как же, как же! — сейчас же вклинивается бес. — Участник знаменитой осады Ла Рошели.[52]
— Вот я и говорю, — продолжает Мате, будто не слыша, — в инженерном деле без чертежей не обойтись. Подсуньте токарю алгебраическое уравнение вместо вычерченной во всех проекциях детали — он вас так поблагодарит, что не обрадуетесь! В этом случае метод Дезарга, усовершенствованный в восемнадцатом веке другим французским ученым, Монжем, не то что лучший, а просто-напросто единственно возможный. Если же говорить о теоретической или так называемой чистой математике — здесь уже уместнее способ Декарта.
— Ко-ко-ко! — вкрадчиво кудахчет черт. — Как говорится, Декарту и карты в руки!
Но Мате и бровью не ведет.
— Допустим, — говорит он, — нам дан воображаемый треугольник, и мы должны выяснить все, что с ним связано: площадь, размеры сторон, углов, биссектрис, высот, медиан, радиуса вписанного и описанного кругов, в свою очередь — их площади, а также длины их окружностей — словом, всю подноготную! Так вот, методом Декарта все это можно вычислить без единого чертежа, зная всего лишь координаты трех вершин, то есть шесть чисел.
Фило потрясен. Этот Декарт — настоящий фокусник! Выходит на сцену почти с пустыми руками, не имея ничего, кроме трех точек, а через несколько минут все кругом завалено биссектрисами, медианами и всякими там вписанными и описанными окружностями… Ну, а Дезарг? Как вычислял эти штуковины он?
Оказывается, никак. Он вообще ничего не вычислял — только чертил. Проектировал разные геометрические тела и фигуры на всевозможные поверхности и изучал свойства проекций (оттого-то геометрия его и называется проективной). Возьмет, например, конус, проведет через его вершину различные плоскости, спроектирует на них круговое сечение конуса и исследует, что у него получилось.
Но Фило уже вошел во вкус, и общие слова его не устраивают. Он непременно хочет знать, что именно получилось у Дезарга, и услыхав, что это окружность, эллипс, парабола и гипербола, впадает в тихое умиление. Подумать только! То самое, что они проходили на исфаханском базаре!
— По-моему, мы там проходили мимо верблюда, — острит Мате.
Но Фило не до шуток. Неужели Мате не помнит? Они брали бумажный фунтик, то есть конус, и рассекали его воображаемыми плоскостями. При этом у них, совсем как у Дезарга, тоже получались окружность, эллипс, парабола и гипербола.
— Вся штука в том, что Дезарг добывал их другим способом: с помощью проекций. Понимаете?
— Вполне! Кстати, что такое проекция?
Мате закатывает глаза с видом мученика. Не знать, что такое проекция! Бывает же… Что ж, придется объяснять. Но вот вопрос: где? Сказать по правде, ему еще не доводилось чертить, кувыркаясь в воздухе.
— Знаете что? Давайте посидим на той крыше! — вдохновенно предлагает Фило. — Она вроде бы не такая покатая.
— Удачнейший выбор, мсье! — живо откликается бес, который и сам не прочь отдохнуть. — Крыша руанской судебной палаты. Самое подходящее место, чтобы судить о чем бы то ни было, в том числе о достоинствах метода Дезарга. Ко-ко…
Через минуту они уже сидят на твердой черепичной почве, для удобства покрытой Асмодеевым плащом.
— Может, позавтракаем? — осторожно заикается Фило.
— Вы, кажется, проекциями интересовались, — обрывает его Мате и лезет за своим блокнотом. — Начнем с проекции, которая называется центральной.
Он набрасывает контур некой произвольной фигуры, на некотором расстоянии от нее обозначает плоскость…
— Допустим, нам надо спроектировать вот эту фигуру на эту вот плоскость. Выберем точку вне заданной фигуры — назовем ее центром проекций — и проведем из нее лучи через точки контура до пересечения с плоскостью. Точки пересечения объединим одной линией — и проекция готова.
— Как просто! — удивляется Фило. — К тому же очень похоже на то, что мысленно делает художник, когда хочет изобразить предмет в перспективе.
— Всегда говорил, что искусству без науки не прожить, — походя ввертывает Мате. — Но давайте все же не отвлекаться! Следующая разновидность — проектирование параллельное. В этом случае лучи проводятся не из одного центра, а из каждой точки проектируемого контура.
Фило тычет в чертеж пухлым, по-детски оттопыренным пальцем.
— А почему ваши лучи косые?
— Так мне хочется! Имею полное право проводить лучи в любом направлении, с тем условием, чтобы все они были параллельны друг другу. Если же я проведу их не наклонно, а перпендикулярно к плоскости проекций, — это уже будет проекция ортогональная. Самая, пожалуй, необходимая из всех, потому что именно она используется в начертательной геометрии.
Фило понимающе кивает. Начерталка! У его соседа-студента от одного этого слова нервный тик делается.
Мате признает, что предмет и в самом деле свирепый. Но, увы, без него, так же, впрочем, как и без сопромата, нет настоящего инженера-конструктора!
— Наивосхитительнейший мсье Мате, — жалобно взмаливается бес, делая еще одну отчаянную попытку вернуть расположение разобиженного математика, — не могли бы вы познакомить меня хоть с одной из работ Дезарга? Я так давно об этом мечтаю!
— Хм… — Мате с досадой отмечает, что злость его на Асмодея испаряется с катастрофической быстротой. — Как-нибудь в другой раз. Впрочем, если вам так уж хочется… — Он решительно хлопает себя по колену. — Ну да ладно, хватит дуться! Вот вам одна, зато чрезвычайно важная, теорема проективной геометрии. Она так и называется: теорема Дезарга.
Он вычерчивает небольшой треугольник, поясняя, что размеры его сторон в данном случае никакого значения не имеют, ставит где-то слева от него точку и проводит из нее три луча так, что каждый из них проходит через одну из вершин треугольника.
— Центральное проектирование, — глубокомысленно определяет Фило.
— Не совсем так, — морщится Мате. — Вернее даже, совсем не так. Ну да сейчас не в том дело… Строим второй треугольник, тоже с тем расчетом, чтобы каждая из трех его вершин оказалась на одном из трех лучей… Незачем говорить, что таких треугольников можно нагородить сколько угодно. А теперь продолжим в одном и в другом треугольнике те стороны, концы которых лежат на общих лучах, до тех пор, пока они не пересекутся. Точки пересечения обозначим пожирнее и увидим, что все они, эти точки, лежат на одной прямой.
Бес изучает чертеж с неподдельным интересом. Так вот она какая, теорема Дезарга! Очень, очень оригинальна… Теперь бы еще разузнать доказательство — и более счастливого черта не сыщешь во всей преисподней!
По правде говоря, тонкий намек его ни к чему, ибо если сам Асмодей жаждет получить объяснения, то Мате просто умирает от желания дать их. Он уже готовится произнести свое излюбленное «итак», но Фило, который как раз в это время на собственном опыте постигает справедливость пословицы «Голод не тетка», зажимает ему рот ладонью.
— Только не теперь! Вы что, хотите, чтобы я съел себя самого?
Вид у него такой воинственный, что Мате нехотя уступает. В конце концов, для доказательств есть у них домашние итоги. Хотя кое-что надо бы подытожить сейчас: они так увлеклись разговором о двух великих «Д», что совсем забыли о великом «П»!
— О Паскале, что ли? — нетерпеливо расшифровывает Фило. — По-моему, тут и так все ясно! Паскаль — ученик и последователь Дезарга.
Но Мате столь куцый вывод явно не устраивает. Последователи, говорит он, бывают разные. Одни рабски повторяют кем-то найденное, другие — творят заново. В данном случае не то главное, что Паскаль, совсем еще, в сущности, мальчик, в совершенстве овладел сложными приемами Дезарга, а то, что он проявил себя зрелым ученым и обогатил метод учителя. Доказательство тому — «Опыт о конических сечениях», юношеский трактат Паскаля. Он невелик — всего 53 строки. Но изложенные в нем теоремы заставили говорить о себе всю ученую Францию! А одна из них — теорема о шестивершиннике (Дезарг назвал ее «великой паскалевой») — навсегда останется в числе главных теорем проективной геометрии.
— Ага! — азартно уличает Фило. — Вот когда вы раскрыли свои карты! Вы, как и Паскаль, тоже сторонник Дезарга. И не вздумайте отпираться! Очень уж горячо вы о нем говорите.
Колючие глазки Мате разглядывают его с подчеркнутым любопытством. Ну и упрямец! Умри, а скажи ему, кто лучше: Декарт или Дезарг. Но что же делать, если оба хороши!
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Искатели необычайных автографов"
Книги похожие на "Искатели необычайных автографов" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Эмилия Александрова - Искатели необычайных автографов"
Отзывы читателей о книге "Искатели необычайных автографов", комментарии и мнения людей о произведении.