» » » » Эмилия Александрова - Искатели необычайных автографов


Авторские права

Эмилия Александрова - Искатели необычайных автографов

Здесь можно скачать бесплатно "Эмилия Александрова - Искатели необычайных автографов" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство ТЕРРА-Книжный клуб, год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Эмилия Александрова - Искатели необычайных автографов
Рейтинг:
Название:
Искатели необычайных автографов
Издательство:
ТЕРРА-Книжный клуб
Год:
2001
ISBN:
5-275-00080-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Искатели необычайных автографов"

Описание и краткое содержание "Искатели необычайных автографов" читать бесплатно онлайн.



Любитель изящной словесности Филарет Филаретович Филаретов, или сокращенно Фило, и признающий только красоту математики Матвей Матвеевич Матвеев, или сокращенно Мате, отправляются в путешествие по прошедшим эпохам в поисках автографов великих писателей и математиков. Каково же их удивление, когда оказывается, что они разыскивают одних и тех же людей! На страницах этой удивительной книги вы повстречаетесь с Омаром Хайямом, Блезом Паскалем, Эратосфеном, Фибоначчи, Пифагором и многими другими великими людьми, которые, возможно, предстанут в новом, незнакомом для вас качестве. Немаловажно, что книга написана простым понятным языком и не требует специальных знаний в области математики.






1 2 5 13 34 89

1 3 8 21 55

— Смотрите-ка, снова числа Фибоначчи!

Но Мате объяснил, что иначе и быть не могло: ведь каждое число Фибоначчи есть разность между двумя соседними числами ряда.

Далее, составив тем же способом следующие строки, он продолжил таблицу и получил числовой треугольник:

1 2 5 13 34 89

1 3 8 21 55

2 5 13 34

3 8 21

5 13

8

— Вы, конечно, понимаете, — добавил Мате, — что треугольник может быть расширен и удлинен до бесконечности. Так вот, я заметил, что, путешествуя по наклонным рядам этого треугольника, начиная с единицы, можно совершать самые разнообразные зигзаги, каждый раз получая полный ряд чисел Фибоначчи.

Он снова обратился к чертежу и наметил несколько маршрутов по треугольнику.

— А знаете, это и впрямь чертовски занимательно, — признался Фило.

— Погодите, я еще не кончил, — остановил его Мате. — Повернем тот же треугольник по ходу часовой стрелки градусов этак на сорок, заодно увеличив его на несколько строк, а потом сложим числа каждой горизонтальной строки.

— Зачем?

— Сейчас поймете.

Мате выписал треугольник, поставив на уровне каждой строки сумму ее чисел.

1 1

1 2 3

2 3 5 10

3 5 8 13 29

5 8 13 21 34 81

8 13 21 34 55 89 220

13 21 34 55 89 144 233 589

21 34 55 89 144 233 377 610 1563

— Во-первых, обратите внимание на то, что вдоль левой боковой стороны этого числового треугольника расположены последовательные числа Фибоначчи, — сказал он.

— Обратил, — подтвердил Фило. — А во-вторых?

— Во-вторых, исследуя полученные суммы, я увидел, что каждую из них можно, в свою очередь, представить в виде суммы ряда простых чисел. Для порядка начнем с единицы — ведь она как-никак тоже число простое.

1 = 1 (1 слагаемое)

3 = 3 (1 слагаемое)

10 = 3 + 7 (2 слагаемых)

29 = 3 + 7 + 19 (3 слагаемых)

81 = 3 + 7 + 19 + 23 + 29 (5 слагаемых)

220 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 71 (8 слагаемых)

589 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 43 + 67 + 71 + 79 + 83 + 97 (13 слагаемых)

1563 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 43 + 67 + 71 + 79 + 83 + 97 + 101 + 103 + 107 + 109 + 113 + 131 + 137 + 173 (21 слагаемое)

— Чуете? — спросил Мате, закончив таблицу и торжествующе посмеиваясь.

Но Фило лишь виновато хлопал глазами.

— Эх вы! — пристыдил его Мате. — Да тут и ребенку ясно, что количество простых чисел, входящих в каждую сумму, тоже образует ряд Фибоначчи.

— Но это же замечательное открытие! — бурно обрадовался Фило.

— До открытия далеко. Я исследовал только восемь строк треугольника, а их бесконечное множество.

— Так найдите общее доказательство.

— Только и всего? — Мате язвительно осклабился. — Попробуйте-ка сами!

— Э, нет, слуга покорный! Предоставим это мессеру Леонардо, — отшутился Фило. — К тому же вы все еще не ответили на мой вопрос.

— Наоборот! — энергично запротестовал Мате. — Я только и делаю, что отвечаю на него. Я показал вам, как перспективна игра с числами вообще и с числами Фибоначчи в частности. Она чревата самыми непредвиденными открытиями, которые могут привести к самым неожиданным практическим результатам. Вот почему я так высоко оцениваю этот удивительный числовой ряд. А теперь…

Он засунул руку в карман, позвякал там медяшками и без всякого видимого перехода предложил Фило отгадать, сколько монет у него в кармане. Фило обиделся: за кого его принимают? Факир он, что ли?

— Ладно! — смилостивился Мате. — Я не заставлю вас гадать ни на картах, ни на кофейной гуще. Вот вам некоторые наводящие данные. В кармане у меня только трех- и пятикопеечные монеты на сумму 49 копеек.

— Так бы сразу и сказали! Теперь я, по крайней мере, понимаю, что должен составить уравнение, и притом весьма простое. Обозначим число пятачков через х, а число трехкопеечных монет — через у. Тогда пятикопеечных монет будет на сумму 5х, а трехкопеечных — на 3у. Общая сумма их, как известно, 49 копеек. Следовательно, 5х + 3у = 49.

— Ставлю вам пять с плюсом, — сказал Мате. — Уравнение отличное. Но как вы его решите?

Фило призадумался. Попробуйте-ка решить одно уравнение с двумя неизвестными!

— Не беда, — утешил его Мате. — Мы ведь с вами знаем, что число монет каждого достоинства может быть только целым, а не дробным. Так давайте попробуем подобрать эти числа. Начнем, естественно, с самого маленького целого числа: с единицы. Иначе говоря, предположим, что пятачок у меня всего один. Пишем: х = 1. Теперь подставим это в наше уравнение: 5 х 1 + 3у = 49. Отсюда 3у = 44, а у = 44/3

— Простите, 44/3 не целое число…

— Прекрасно. Значит, наше предположение отпадает. Теперь допустим, что х = 2. Тогда 5 х 2 + 3у = 49. Отсюда 3у = 39, у = 13. Получается, что у меня два пятака и тринадцать трехкопеечных монет.

— Браво! — ликовал Фило. — Задача решена!

— Экий вы быстрый! А ну как есть другое решение? А вдруг у меня не два, а пять пятачков? Возможно это или невозможно?

— Сейчас узнаем. 5 х 5 + 3у = 49. Отсюда 2у = 24, у = 8. Вот так компот! Выходит, у задачи не одно решение.

— Как видите.

— Поискать, что ли, другие?

И Фило принялся за поиски. Перебрав варианты х = 3, 4, 6 и 7, он убедился, что ни один из них невозможен. Зато при х = 8 игрек оказался равным 3. Таким образом к прежним двум прибавилось еще одно, третье решение. Однако вариант х = 9 опять не подошел. Фило собрался было подставить х = 10, но Мате, смеясь, остановил его: ведь в этом случае одних пятачков было бы на 50 копеек, а у него всего 49. Значит, дальнейшие поиски бессмысленны.

— Итак, — подытожил он, — мы выяснили, что уравнение имеет три решения: 1) х = 2, у = 13; 2) х = 5, у = 8; 3) х = 8, у = 3. Следовательно, в кармане у меня либо 15, либо 13, либо 11 монет.

Фило неодобрительно поджал губы. Ну и точность! Тут уж бабушка не надвое, а натрое гадала.

— Потому-то уравнения такого рода и называются неопределенными, — разъяснил Мате. — Кроме того, наше уравнение отличается от других неопределенных еще и тем, что по условию ответ его должен быть обязательно в целых числах.

— Не понимаю, — надулся Фило, — кому нужны уравнения с несколькими ответами?

— Не скажите. Неопределенные уравнения интересовали математиков с глубокой древности. Ими занимались еще в Древней Индии! Но особенно подробно изучал их грек Диофант. Он рассмотрел многие неопределенные уравнения вплоть до четвертой степени и нашел для каждого все возможные решения в целых числах. Потому-то уравнения такого рода стали называть диофантовыми, хотя общего метода решения их Диофант не обнаружил.

— Но для чего все-таки нужны такие уравнения? Где они используются?

— Везде. В любой науке, в любой отрасли народного хозяйства — всюду, где мы имеем дело только с целыми числами. Вот, например, может ли фабрика выпустить не целое число шляп, скажем, 245 с четвертью? Можно ли запустить в космос полтора спутника? Бывает ли в табуне не целое число лошадей? Разумеется, нет. Таких задач, которые должны быть решены только в целых числах, великое множество. Понимаете теперь, какое важное место в нашей жизни занимают диофантовы уравнения?

— Понимаю, понимаю, — сдался Фило. — Но вам не кажется, что мы слишком отдалились от первоначальной темы нашего разговора? Говорили о числах Фибоначчи, потом ни с того ни с сего перескочили на диофантовы уравнения…

— Это вы называете «ни с того ни с сего»? Да ведь между ними самая прямая связь! Да будет вам известно, что десятая проблема Гильберта, решенная посредством чисел Фибоначчи, касается именно диофантовых уравнений! Она предлагает указать способ, с помощью которого после конечного числа операций возможно установить, разрешимо ли данное диофантово уравнение в целых числах.

— Вот оно что! — сообразил Фило. — Стало быть, именно этот способ и нашел Юрий Матиясевич?

Мате замялся.

— Жаль вас огорчать, но все было как раз наоборот. Матиясевич разрешил десятую проблему в отрицательном смысле. Он доказал, что такого способа в общем виде не существует.

— Ууу! — разочарованно протянул Фило. — Так десятая проблема Гильберта оказалась бесполезной?

Мате сердито замахал руками. Что за чепуха! Во-первых, метод, который применил Матиясевич, разрешая десятую проблему, представляет огромную ценность для математики уже сам по себе. Во-вторых, вывод его избавил ученых от дальнейших поисков в этом направлении. И наконец, в-третьих, — десятая проблема Гильберта привела к возникновению новой ветви математики, которая называется теорией алгоритмов. А это такое… такое…

Но тут раздался взволнованный, срывающийся голос Фило:

— Мате, Мате! Взгляните на результаты нашего уравнения! Два, три, пять, восемь, тринадцать… Это же числа Фибоначчи!


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Искатели необычайных автографов"

Книги похожие на "Искатели необычайных автографов" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Эмилия Александрова

Эмилия Александрова - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Эмилия Александрова - Искатели необычайных автографов"

Отзывы читателей о книге "Искатели необычайных автографов", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.