Коллектив Авторов - Концепции современного естествознания

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Концепции современного естествознания"
Описание и краткое содержание "Концепции современного естествознания" читать бесплатно онлайн.
В учебнике, написанном коллективом преподавателей РГПУ им. Герцена под руководством Л. А. Михайлова – декана факультета безопасности жизнедеятельности, лауреата премии Президента РФ, представлены новейшие концепции всех естественных наук: биологии, генетики, физики, химии, математики, информатики, биохимии, геологии, антропологии и других. В книге раскрываются социальные последствия новых научных открытий, даются современные технологии обучения в области концепций современного естествознания.
Учебник полностью соответствует Государственному образовательному стандарту и имеет гриф УМО. Он предназначен для студентов высших учебных заведений гуманитарного, психолого-педагогического, естественнонаучного направлений.
Вопросы для самопроверки
1. Чему равен радиус Земли? Насколько экваториальный радиус Земли длиннее полярного?
2. Как называется оболочка Земли, состоящая из земной коры и верхней части мантии?
3. Назовите три слоя, составляющие материковую земную кору.
4. Назовите древние платформы, лежащие в основании материков Африка, Северная Америка, Южная Америка.
5. Дайте определение тектонических структур: плита, платформа, щит, фундамент, осадочный чехол.
6. Перечислите важнейшие функции гидросферы Земли. Каким образом вода осуществляет терморегуляцию планеты?
7. Какова роль гидросферы в круговороте веществ в природе?
8. На какие отдельные зоны делится атмосфера? Каковы принципы этого деления?
9. Каков состав атмосферы?
10. В чем разница между климатом и погодой?
11. В чем заключается гипотеза возникновения атмосферы?
Глава 8
ЖИВАЯ МАТЕРИЯ
8.1. Электромагнитные взаимодействия как определяющие химический и биологический уровень организации материи
Живое вещество, как и вся материя Вселенной, состоит из атомов и молекул, для которых уже известны определенные законы поведения, в том числе на квантово-молекулярном уровне. В этом смысле при научном познании живого представляется вполне возможным применение физических представлений и моделей по исследованию развития природы и закономерностей процессов, проходящих в живом организме. По этому поводу советский физико-химик и биофизик М. В. Волькенштейн писал: «В биологии как в науке о живом возможны только два пути: либо признать невозможным объяснение жизни на основе физики и химии, либо такое объяснение возможно и его надо найти, в том числе на основе общих закономерностей, характеризующих строение и природу материи, вещества и поля».
По мнению многих исследователей, изучение проблем генетического кода, молекулярной природы наследственности и т. д. на заключительном этапе сводится к квантово-механическому объяснению всех этих явлений. В связи с этим следует отметить, что атомно-молекулярное толкование большинства явлений живого на сегодняшний день представляется наиболее верным. Вероятно, что живой и неживой природой управляют одни законы, однако механизм их проявления разный, что подтверждается синергетикой как наукой о неравновесных системах и самоорганизации.
Существование физических полей разной природы в живых организмах представляет значительный интерес. Это связано с одной стороны с раскрытием сущности физики живого, а с другой – с взаимодействием полей живых организмов с полями окружающей природной среды, обусловленными главным образом гелио– и геофизическими факторами. Эти взаимодействия обеспечивают живому организму необходимый ему объем информации в процессе жизнедеятельности. Функционирование всех систем живого организма динамично отражается в мозаике физических полей и излучений, исходящих из него, которые, в свою очередь, зависят от параметрических изменений естественных фоновых полей и излучений, окружающих живой организм.
Идентификация полей и излучений, например, человеческого организма сейчас широко используется в медицине для определения динамики различных физиологических процессов и выявления «неполадок» в функционировании определенных органов. Поэтому физические поля и излучения живого организма как бы есть своеобразное «табло» его физиологических процессов. Например, человеческий организм способен продуцировать инфракрасное излучение (ИК) и излучения сверхвысокой частоты (СВЧ), электромагнитные поля (ЭМП) и излучения (ЭМИ) и т. д. По существу, живой организм окружен биополем, под которым следует понимать присущую ему совокупность физических полей.
Электромагнитное взаимодействие обусловливается электрическими и магнитными зарядами. Электрический заряд всегда связан с элементарными частицами. Магнитные силы порождаются движением электрических зарядов, то есть электрическими токами. Согласно закону Кулона, сила электрического взаимодействия будет силой притяжения или отталкивания в зависимости от знаков взаимодействующих зарядов. Видимый свет, являющийся основой существования зеленых растений, синтезирующих органическое вещество на Земле, да и всего живого, является электромагнитным излучением определенного диапазона частот.
Согласно теории советского биохимика А. И. Опарина электромагнитные излучения Солнца и электрических разрядов явились энергетической основой абиогенного происхождения жизни. Именно с их помощью происходил процесс образования биомолекул: аминокислот, нуклиотидов, полисахаридов, белковых комплексов, а затем клетки как главной структуры живого.
Электромагнитные поля и электромагнитные излучения являются основными видами излучения для живых организмов. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу. Электромагнитные взаимодействия характеризуют структуру и поведение атомов, отвечают за связи между молекулами различных веществ, таким образом определяя химические и биологические явления.
Электромагнитные поля и излучения в живом организме связаны с возникновением, движением и взаимодействием электрических зарядов в процессе его онтогенеза. На клеточном уровне они возникают при работе митохондрий, на органном и организменном уровнях – при работе сердца и токе крови в сосудах, при нервных и мышечных сокращениях.
Электрические явления в живом организме характеризуются определенными последовательностями электрических импульсов и ритмами определенной характеристики, поскольку в каждом органе вырабатываются свои определенные, специфические электроколебательные процессы. Ритмичность и частота колебаний этих процессов зависят от степени активности организма (сон, бег, сильный стресс и т. д.). В свою очередь, активность физиологического состояния организма (например, человека) и его работоспособность также зависят от биоритмов и периодически меняются сообразно времени суток. Биологические ритмы как следствие эволюционного процесса проявляются на всех уровнях организации живой материи, начиная с клеток и заканчивая биосферой.
Ритмичность на уровне клеток живого организма определяется биохимическими колебательными процессами, связанными с движением ионов, необходимых для жизнедеятельности клетки (К+,Са2+ и др.), как вовнутрь клетки, так и из нее. Доказано, что общим регулятором внутриклеточных процессов являются ионы кальция. Именно они и их концентрация обеспечивают биологические ритмы клеток.
Ритмичность на уровне растительных организмов проявляется в годовом изменении темпов роста, суточном движении листьев; на уровне животных организмов в темпах двигательной активности, в колебаниях температуры, функционировании органов внутренней секреции, синтеза гормонов, белков, половой активности и т. д. Американский математик и кибернетик Н. Винер писал, что «именно ритмы головного мозга объясняют способность чувствовать время». Чем сложнее система, тем она обладает большим количеством биоритмов. Биоритмы определяют биологическое время и свойственны неравновесным самоорганизующимся живым системам.
Интенсивность физико-химических процессов в мембране и, следовательно, в самой клетке определяется величиной мембранного потенциала. Это значит, что энергия электрического поля в мембранах, подобно конденсаторам, играет важную роль в поддержании устойчивого/неустойчивого равновесия и рассматривается как резерв свободной энергии. Эта энергия, наряду с энергией АТФ (аденозинтрифосфат) и перекисного окисления липидов необходима живому организму для функционирования и развития.
Биохимические реакции в живом организме обусловлены биологическим током, возникающим при движении электронов и, в основном, ионов. При этом возрастает роль поляризации клеток и биополимерных молекул, роль структуры воды в процессах метаболизма. Изменения электрических свойств организмов связано с перераспределением в них электрических зарядов при их движении. Это же происходит и в потоке крови. Крови свойственны электропроводность и магнетизм. При ее движении по сосудам возникают электродинамические, электромагнитные и гидродинамические взаимодействия со стенками сосудов.
Следовательно, электромагнитные взаимодействия являются атрибутом существования живой материи на любом уровне ее организации. Живые организмы буквально плавают в море всевозможных физических полей – как внутренних, вырабатываемых самими организмами, так и внешних.
8.2. Симметрия и асимметрия в природе
Симметрия и асимметрия являются объективными свойствами природы, одними из фундаментальных в современном естествознании. Симметрия и асимметрия имеют универсальный, общий характер как свойство материального мира.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Концепции современного естествознания"
Книги похожие на "Концепции современного естествознания" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Коллектив Авторов - Концепции современного естествознания"
Отзывы читателей о книге "Концепции современного естествознания", комментарии и мнения людей о произведении.