» » » » Коллектив Авторов - Концепции современного естествознания


Авторские права

Коллектив Авторов - Концепции современного естествознания

Здесь можно скачать бесплатно "Коллектив Авторов - Концепции современного естествознания" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство 046ebc0b-b024-102a-94d5-07de47c81719, год 2008. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Коллектив Авторов - Концепции современного естествознания
Рейтинг:
Название:
Концепции современного естествознания
Издательство:
046ebc0b-b024-102a-94d5-07de47c81719
Год:
2008
ISBN:
978-5-91180-778-8
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Концепции современного естествознания"

Описание и краткое содержание "Концепции современного естествознания" читать бесплатно онлайн.



В учебнике, написанном коллективом преподавателей РГПУ им. Герцена под руководством Л. А. Михайлова – декана факультета безопасности жизнедеятельности, лауреата премии Президента РФ, представлены новейшие концепции всех естественных наук: биологии, генетики, физики, химии, математики, информатики, биохимии, геологии, антропологии и других. В книге раскрываются социальные последствия новых научных открытий, даются современные технологии обучения в области концепций современного естествознания.

Учебник полностью соответствует Государственному образовательному стандарту и имеет гриф УМО. Он предназначен для студентов высших учебных заведений гуманитарного, психолого-педагогического, естественнонаучного направлений.






4.3. Химическое соединение, химическая связь

Многообразие объектов, изучаемых в рамках химии, вовсе не исчерпывается только элементами и изотопами. Химические элементы объединяются в более сложные системы, называемые химическими соединениями. На уровне микромира это описывается как образование из атомов более сложных (составных) частиц – молекул.

► Молекула – это электронейтральная наименьшая совокупность атомов, образующих определенную структуру посредством так называемых химических связей.

Химическая связь представляет собой одно из фундаментальных физических взаимодействий – электромагнитное. Возможность вступить в химическую связь атомы получают за счет потери своей электронейтральности в результате отрыва одного или нескольких электронов (положительный заряд) или присоединения одного или нескольких электронов (отрицательный заряд). Далее противоположно заряженные частицы – ионы – притягиваются к другу, нейтрализуя свои заряды и образуя в итоге молекулу химического соединения, обладающую свойством электро-нейтральности. В данном примере рассмотрена так называемая ионная химическая связь, характеризующаяся наивысшей энергией связи, возможной среди всех ее типов. Другие известные типы химической связи – ковалентная, донорно-акцепторная и др. – также связаны с электромагнитными взаимодействиями; только в этих случаях происходит не отрыв электронов от атома, а их некоторое смещение от нейтрального положения, в результате чего также образуется некий заряд.

 Процесс образования молекул из атомов называется химической реакцией.

Периодическая система элементов определяет для каждого элемента:

♦ тип и заряд заряженной частицы (иона);

♦ типы химических соединений, в которые могут вступать атомы данного элемента, то есть, по сути, химические формулы молекул;

♦ типы химических связей, которые могут реализоваться в таких молекулах;

♦ типы химических реакций, в которые может вступать данный элемент.

Молекулы могут содержать атомы только одного элемента, в этом случае такие вещества называются простыми. Многочисленные примеры – существование чистых металлов (особенно химически инертных драгоценных металлов – золота, платины), инертных газов – неона, радона и др. У некоторых простых веществ молекулы состоят из двух и более одинаковых атомов – это так называемые двухатомные газы, например кислородО2, галогены – газы фтор F2 и хлор Cl2, жидкость бром Br2, твердое вещество йод J2. Молекула известного газа озона содержит три атома кислорода по формуле О3, а молекула белого фосфора – четыре атома фосфора Р4.

Вещества, молекулы которых состоят из атомов разных элементов, называются сложными веществами, или химическими соединениями, например: соединения разных элементов с кислородом называются оксидами, с фтором – фторидами, с хлором – хлоридами. Все химические соединения объединены в классы, и названия соединений разных классов определяется согласно международным стандартам номенклатуры химических соединений ИЮПАК.

Традиционно химические соединения подразделяют на неорганические – соединения всех элементов Периодической системы, и органические – соединения углерода и некоторых других элементов, в которых атомы углерода соединены между собой в цепи (соответственно оформились фундаментальные направления химической науки – неорганическая и органическая химия). Всего химических соединений на настоящий момент известно несколько миллионов, и их количество постоянно растет за счет синтеза новых органических соединений.

В настоящее время известно 110 элементов, а число образуемых ими простых веществ – около 400. Такое различие объясняется способностью некоторых элементов существовать в виде различных простых веществ, отличающихся как по химическим, так и по физическим свойствам. Это явление получило название аллотропии, а сами различные вещества – аллотропными модификациями. Свойством образовывать аллотропные модификации обладают как простые вещества, например рассмотренные выше соединения двухатомный кислород и трехатомный озон (не менее известный пример – аллотропия углерода С: уголь, алмаз, графит, шунгит – химическая формула всех перечисленных соединений одна и та же), так и сложные соединения, например многочисленные аллотропные формы оксида кремния (речной песок, минерал кварц и др.) и оксида алюминия (глинозем и корунд).

4.4. Химическая реакция, ее скорость, кинетика и катализ, биокатализаторы

Для установления состава химических соединений очень важен закон постоянства их состава. Положения этого закона позволили химикам отделять настоящие химические соединения от простых смесей. Впервые в истории химии этот закон был сформулирован французским химиком Ж. Прустом в начале XIX в.:

 Любое индивидуальное химическое соединение обладает строго определенным неизменным составом, прочным притяжением составных частей и тем самым отличается от смесей.

Теоретически закон постоянства состава обосновал английский естествоиспытатель Д. Дальтон в своем знаменитом законе кратных отношений: «соединения состоят из атомов двух или нескольких соединений, образующих определенные сочетания друг с другом». В его честь все химические соединения постоянного состава (а их подавляющее большинство среди веществ) называют дальтонидами.

Закон постоянства состава вещества использовал и Д. И. Менделеев при разработке своей периодической системы – постоянство состава соединений, которые может образовывать данный элемент, следует из его положения в периодической таблице Менделеева. Представление о составе вещества – одно из концептуальных понятий для химии как естественной науки. Постоянство состава химических соединений обусловлено физической природой химических связей, объединяющих атомы в одну квантово-механическую систему – молекулу.

Необходимость выработки строгих научных принципов относительно состава вещества позволила химикам успешно развить строгое научное понятие химической реакции как процесса образования новых химических соединений. В химической реакции участвуют исходные вещества, которые реагируют друг с другом и с течением времени превращаются в новые вещества, называемые продуктами реакции. Из закона постоянства состава вещества следует постоянство не только состава молекул продуктов реакции, но и постоянство количественных соотношений (массовых долей) исходных веществ.

► Стехиометрия – раздел химии, в котором рассматриваются массовые или объемные отношения между реагирующими веществами. Законы стехиометрии так же непреложны, как и любые другие естественнонаучные законы; кроме того, их знание очень полезно для прикладной химии, потому что позволяет количественно рассчитать выход химической реакции и необходимое количество исходных веществ.

Процесс получения новых химических соединений с учетом сте-хиометрических соотношений обычно записывается в виде уравнения химической реакции, например:

6HCL + 2HNO3 = 3CL2 + 2NO + 4H2O,

где

♦ химические формулы слева от знака равенства обозначают исходные вещества;

♦ химические формулы справа от знака равенства обозначают продукты реакции;

♦ цифры перед формулами химических соединений являются так называемыми стехиометрическими коэффициентами; они раскрывают массовые (или объемные) соотношения веществ.

В уравнении химической реакции нашел свое отражение еще один фундаментальный закон естествознания – закон сохранения вещества, открытый нашим соотечественником М. В. Ломоносовым и независимо от него – французом А. Л. Лавуазье. Именно в соответствии с этим законом и получается математическое выражение – уравнение: масса данного элемента слева от знака равенства должна быть равна массе этого же элемента справа от знака равенства, а стехиометрические коэффициенты уравнивают (не только математический, но и химический термин!) данную реакцию.

Проникновение математических понятий, выражений, терминов (уравнения, коэффициенты) в химию, смешение терминологий означает, что на важном историческом этапе формирования химии как науки (XVIII–XIX вв.) она развивалась в соответствии с научной парадигмой того времени – классической механикой. Применительно к химии эта парадигма могла бы быть выражена следующим образом: любой закон природы можно представить в виде математического соотношения, записываемого с участием химических формул.

Еще один интересный случай проникновения классического ньютоновского подхода в химию – понятие о скорости химической реакции. Пытаясь получить новые химические соединения, ученые-химики разных эпох неоднократно отмечали тот факт, что некоторые вещества реагируют друг с другом мгновенно, часто со взрывом, а другие – медленно, в течение нескольких часов (суток). Скорости многих химических процессов были установлены эмпирическим путем. И для вычисления скорости химических реакций было использовано ньютоновское представление о времени как о не зависящей от свойств вещества и пространства простой длительности. Процесс химической реакции можно рассматривать как процесс изменения концентраций начальных и конечных продуктов реакции, и, согласно классической механике, для любого процесса изменения (движения) во времени всегда можно рассчитать скорость этого изменения.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Концепции современного естествознания"

Книги похожие на "Концепции современного естествознания" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Коллектив Авторов

Коллектив Авторов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Коллектив Авторов - Концепции современного естествознания"

Отзывы читателей о книге "Концепции современного естествознания", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.