Д. Самин - 100 великих учёных

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "100 великих учёных"
Описание и краткое содержание "100 великих учёных" читать бесплатно онлайн.
Пифагор, Гиппократ, Архимед, Кеплер, Декарт, Ньютон, Ломоносов, Лобачевский, Менделеев… у каждого из них своя судьба, свой путь в науку, но всех их объединяет страстное желание познать истину, прикоснуться к загадке бытия. В книге собраны биографии ста великих учёных, открытия которых произвели революцию в мировой науке, далеко раздвинули границы непознанного, наметили новые пути для исследователей.
В 1735 году академии потребовалось выполнить весьма сложную работу по расчёту траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.
В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году — новая теория музыки. Затем в 1840 году Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии Французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.
В конце 1740 года власть в России попала в руки регентши Анны Леопольдовны и её окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное ещё Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно неуверенным», приглашение принял.
В Берлине Эйлер поначалу собрал около себя небольшое учёное общество, а затем был приглашён в состав вновь восстановленной Королевской академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нём указывается на способ интегрирования рациональных дробей путём разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.
Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа — вариационное исчисление. Это его начинание вскоре подхватил Лагранж и таким образом сложилась новая наука.
В 1744 году Эйлер напечатал в Берлине три сочинения о движении светил: первое — теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений; второе и третье — о движении комет.
Семьдесят пять работ Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввёл так называемые углы Эйлера, позволяющие изучать повороты тела вокруг точки.
В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашёл соотношение между числом вершин, рёбер и граней многогранника: сумма числа вершин и граней равна числу рёбер плюс два. Такое соотношение предполагал ещё Декарт, но Эйлер доказал его в своих мемуарах. Это в некотором смысле первая в истории математики крупная теорема топологии — самой глубокой части геометрии.
Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Эйлера, построил первые ахроматические объективы.
В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твёрдого тела, которые носят название Эйлеровых уравнений вращения твёрдого тела.
Много написал учёный сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.
Фридрих Великий давал учёному поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.
Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.
Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был назначен почётным членом, и ему была определена крупная ежегодная пенсия, а он, со своей стороны, взял на себя обязательства в отношении дальнейшего сотрудничества. Он закупал для нашей академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных спорах между петербургскими учёными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях и т. д. В доме Эйлера в Берлине жили студенты из России: М. Софронов, С. Котельников, С. Румовский, последние позднее стали академиками.
Из Берлина Эйлер, в частности, вёл переписку с Ломоносовым, в творчестве которого он высоко ценил счастливое сочетание теории с экспериментом. В 1747 году он дал блестящий отзыв о присланных ему на заключение статьях Ломоносова по физике и химии, чем немало разочаровал влиятельного академического чиновника Шумахера, крайне враждебно относившегося к Ломоносову.
В переписке Эйлера с его другом академиком Петербургской академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечётное натуральное число есть сумма трёх простых чисел, а всякое чётное — двух. Первое из этих утверждений было при помощи весьма замечательного метода доказано уже в наше время (1937) академиком И. М. Виноградовым, а второе не доказано до сих пор.
Эйлера тянуло назад в Россию. В 1766 году он получил через посла в Берлине, князя Долгорукова, приглашение императрицы Екатерины II вернуться в Академию наук на любых условиях. Несмотря на уговоры остаться, он принял приглашение и в июне прибыл в Петербург.
Императрица предоставила Эйлеру средства на покупку дома. Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного завода.
Ещё в 1738 году Эйлер ослеп на один глаз, а в 1771-м после операции почти совсем потерял зрение и мог писать только мелом на чёрной доске, но благодаря ученикам и помощникам. И. А. Эйлеру, А. И. Локселю, В. Л. Крафту, С. К. Котельникову, М. Е. Головину, а главное Н. И. Фуссу, прибывшему из Базеля, продолжал работать не менее интенсивно, чем раньше.
Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.
Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.
В следующей работе 1771 года «О телах, поверхность которых может быть развёрнута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая её и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.
Столь же замечательны работы Эйлера по картографическим проекциям.
Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развёртывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "100 великих учёных"
Книги похожие на "100 великих учёных" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Д. Самин - 100 великих учёных"
Отзывы читателей о книге "100 великих учёных", комментарии и мнения людей о произведении.