» » » » Владимир Левшин - В поисках похищенной марки


Авторские права

Владимир Левшин - В поисках похищенной марки

Здесь можно скачать бесплатно "Владимир Левшин - В поисках похищенной марки" в формате fb2, epub, txt, doc, pdf. Жанр: Детская образовательная литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Левшин - В поисках похищенной марки
Рейтинг:
Название:
В поисках похищенной марки
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "В поисках похищенной марки"

Описание и краткое содержание "В поисках похищенной марки" читать бесплатно онлайн.



Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.

Для младшего школьного возраста.






— Это я и сам знаю. А всё-таки, почему одиннадцать целых и одна тринадцатая есть среднее гармоническое восьми и восемнадцати?

Таня засмеялась.

— Хитрюга! Спросил бы уж прямо, что такое среднее гармоническое.

— Ему престиж не позволяет! — подтрунил Сева.

— Ладно, — миролюбиво сказал я, — выясним, что такое среднее гармоническое. Но для этого вспомним сперва, что такое среднее арифметическое и среднее геометрическое.

— Это я знаю, — оживился президент. — Среднее арифметическое двух чисел — это половина их суммы.

— А среднее геометрическое?

— А среднее геометрическое двух чисел есть корень квадратный из их произведения.

— Отлично! — сказал я. — Хорошо бы это записать.

— Запишем так, — отвечал Нулик:

Что, верно?

— Верно.

— Но какое отношение все это имеет к среднему гармоническому?

— Самое прямое, — сказал я. — Потому что среднее гармоническое так относится к среднему геометрическому, как среднее геометрическое к среднему арифметическому.

— Давайте запишем и это, — предложил президент.

— Запишем, — согласился я и написал на бумажке:

А если подставить сюда уже известные нам буквенные выражения, пропорция эта будет выглядеть так:

Отсюда

— Ага! — обрадовался Нулик. — Теперь подставим сюда цены скрипки и контрабаса. Допустим, цена скрипки — a. Подставляем, стало быть, 8. Цена контрабаса — b. Подставляем 18. Тогда

Теперь все это взбалтываем, смешиваем и получаем 144/13, или 111/13.

— Ну вот, — облегчённо вздохнул Сева. — Их президентское высочество ублаготворены: леопарды и ягуары сошлись.

— По-моему, — вставил Олег, — надо ещё обратить внимание на то, что из всех трех средних самое большое — среднее арифметическое, а самое маленькое — среднее гармоническое.

Нулик поднял светлые бровки.

— Всегда?

— Нет, не всегда, а только в том случае, если числа a и b не равны между собой.

— А если равны?

— Ну, тогда все три средних тоже равны между собой.

— Все это хорошо, — важно сказал президент, — но не кажется вам, что разговор у нас какой-то чудно́й? Сперва говорили про музыку, потом про Пифагора, а потом забыли и про то, и про другое.

— Ничего мы не забыли, — возразил я. — Теперь мы выяснили наконец, что такое среднее гармоническое, и потому можем вернуться к вопросу о связи математики с музыкой. Стало быть, и к Пифагору, который много занимался гармонией. А гармония для Пифагора была понятием широким. Он искал её и в геометрии, и в арифметике, и в движении небесных тел, и в музыке. И находил во всех этих областях науки общие законы гармонии. Пифагор создал целое учение о гармонии и главную роль в этом учении отводил числам. Особое значение придавал он первым четырём числам натурального ряда — 1, 2, 3 и 4. По его мнению, эти числа лежат в основе всякой гармонии…

— Вот уж не нахожу, — перебил Нулик. — Четыре — ещё куда ни шло, но тройка, тем более — двойка… Ничего в них хорошего нет! Так, по крайней мере, говорит моя мама, когда я показываю ей свой школьный дневник.

— Ну, мама, очевидно, подразумевает совсем другое, — улыбнулся я, — а Пифагор считал эти числа фундаментом мировой гармонии. Он пристально изучал их отношения, или, лучше сказать, соотношения, и очень неожиданно применил их в музыке.

— Что ж такое он сделал? — спросил президент, весьма заинтригованный.

— Да на первый взгляд ничего особенного: взял обыкновенную струну и натянул её на доску.

— Это и я могу! — отозвался президент. — Струну можно снять со скрипки, а доску добыть — дело нехитрое.

— Нет, скрипку разорять ни к чему, — быстро сказал Сева, к великому разочарованию президента, обожавшего все разбирать и развинчивать. — Скрипка — это ведь, собственно, и есть дощечка с натянутыми на неё струнами.

— Отлично! — согласился я. — Возьмём скрипку и познакомимся с изобретением Пифагора на личном опыте. Вот струна. Ущипни-ка её, Нулик.

Президент выполнил мою просьбу с удовольствием. — А теперь прижми струну к грифу точно посередине и ущипни её ещё разок… Слышишь? Этот звук получился гораздо тоньше первого, или, как говорят музыканты, выше.

— Слышу! — подтвердил президент, не переставая терзать бедную струну.

— Так вот, разность этих высот, или, как говорят, интервал между ними, принято называть октавой. И получилась октава оттого, что струну разделили в отношении 2:1. Теперь разделим струну на три части и прижмём на расстоянии двух третей. Ну-ка, что там у нас получилось?

— Получился звук хоть и повыше, чем тогда, когда дёргали целую струну, зато чуть пониже, чем когда разделили струну на две части.

— Правильно. Звук при этом получается выше не на октаву, а на так называемую квинту. И происходит это тогда, когда струну делят в отношении 3:2. А теперь разделим струну в отношении 4:3. Попросту прижмём её на расстоянии трех четвертей. Что получилось? Получился звук ещё чуть ниже, чем тогда, когда мы ущипнули две трети струны. Этот интервал между высотой звучания всей струны и высотой звучания трех её четвертей называется квартой.

— Ишь ты, сколько интересного мы сегодня узнали, — сказал Нулик, загибая пальцы, — октава, квинта, кварта…

— Попробуем узнать и ещё кое-что. Вычислим, во сколько раз октава больше кварты.

— Вычислим, — повторил Нулик. — Вычтем из двух…

— Нет, — остановил я его, — тут надо сделать другое. Надо найти, во сколько раз отношение 2:1 больше отношения 4:3.

— Ну это просто. Надо разделить 2/1 на 4/3:

А это все равно, что 3/2…

— А что такое три вторых?

Нулик растерянно молчал.

— Подумай. Ведь мы об этом только что говорили!

— Ой! — просиял президент. — Как же я забыл! Ведь это квинта! Квинта, которая получается, когда струну делят в отношении 3:2.

— Верно, — сказал я. — Но что из этого следует?

— Из этого следует, — догадался Олег, — что октава состоит из квинты и кварты.

Нулик завистливо вздохнул.

— Удивительный человек Пифагор! Какие названия выдумал — квинта, кварта…

— Ну, положим, названия эти появились гораздо позже.

— Когда?

— Много будешь знать — скоро состаришься. Раз ты такой любопытный, попытайся лучше выяснить, во сколько раз квинта больше кварты.

Президент засучил рукава.

— С удовольствием! — И написал на клочке бумаги:

Верно?

— Верно. Заодно не мешает сказать, что интервал, равный девяти восьмым, условились считать за один музыкальный тон.

На сей раз Нулика моё сообщение совершенно не обрадовало.

— Квинты, кварты! — проворчал он, пожимая плечами. — А где же всё-таки среднее гармоническое?

— К нему-то мы и подошли. Дело в том, что, кроме чисел 1, 2, 3 и 4, Пифагору приглянулась ещё одна четвёрка чисел: 6, 8, 9 и 12. Они полюбились ему уже хотя бы потому, что отношение 12:6 равно отношению 2:1 и даёт октаву; отношение 12:8 равно отношению 3:2 и даёт квинту; а отношение 12:9 равно отношению 4:3 и даёт кварту. Пифагор обратил внимание также на средние числа этой великолепной четвёрки — 8 и 9. Здесь интересно вспомнить, что отношение 9:8 соответствует одному тону…

— Но что замечательного нашёл Пифагор в этих числах? — спросил Сева.

— Во-первых, девять — это среднее арифметическое шести и двенадцати, то есть крайних чисел этой четвёрки:

— А восемь?

— А восемь, — неожиданно сказал Олег, — восемь — это их среднее гармоническое. Вот смотрите:

— Наконец-то! — закричал президент и на радостях снова задудел на своей гребёнке, после чего стало совершенно ясно, что с музыкой на сегодня необходимо покончить.

Объявили перерыв. Все потянулись к бутербродам, разложенным на большом блюде. Но вот когда они были съедены и мы уже готовились приступить ко второй части нашего заседания, Олег внёс в комнату красивую суповую вазу, покрытую, как полагается, специальной крышкой. Президент так и замер.

— Неужели это оно? — спросил он с робкой надеждой в голосе.

— Не оно, а он, — поправил Олег.

Нулик благоговейно приблизился к столу и осторожно поднял замысловатый фарфоровый купол. В лицо ему дохнул запахом ванили густой молочный кисель. Президент издал победный клич и хотел уже запустить в него ложку, но Таня тут же её отняла.

— Сперва надо подобрать подходящее ведёрко, не то не едать нам киселя.

— Ну, тогда подберём его поскорее! — волновался Нулик. — Кто просит слова?

— Кто же ещё? Разумеется, ты, — засмеялся Сева.

— Ошибаешься — я киселя прошу! А слова просит… — Нулик обвёл глазами присутствующих, стараясь отгадать, кто решит задачу без проволо́чек.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "В поисках похищенной марки"

Книги похожие на "В поисках похищенной марки" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Левшин

Владимир Левшин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Левшин - В поисках похищенной марки"

Отзывы читателей о книге "В поисках похищенной марки", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.