» » » » Владимир Левшин - Новые рассказы Рассеянного Магистра


Авторские права

Владимир Левшин - Новые рассказы Рассеянного Магистра

Здесь можно скачать бесплатно "Владимир Левшин - Новые рассказы Рассеянного Магистра" в формате fb2, epub, txt, doc, pdf. Жанр: Детская образовательная литература, издательство Детская литература, год 1971. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Левшин - Новые рассказы Рассеянного Магистра
Рейтинг:
Название:
Новые рассказы Рассеянного Магистра
Издательство:
Детская литература
Год:
1971
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Новые рассказы Рассеянного Магистра"

Описание и краткое содержание "Новые рассказы Рассеянного Магистра" читать бесплатно онлайн.



Дорогие читатели?

Если вы уже знакомы с незадачливым героем книги В Лёвшина "Магистр Рассеянных Наук", если уже сталкивались с бесчисленными ошибками и оговорками этого рассеянного математика, вам, вероятно, интересно будет узнать о его новых путешествиях и приключениях, а заодно снова встретиться с постоянными членами Клуба Рассеянного Магистра — Таней, Севой, Олегом и Нуликом.

Если же Магистр Рассеянных Наук для вас лицо новое, не смущайтесь: эта книга — совершенно самостоятельная история о том, как Магистр возомнил себя великим сыщиком и отправился в далёкие страны вместе со своей неизменной спутницей Единичкой, а также с твёрдым намерением расследовать дерзкое преступление

Особая к вам просьба: читая рассказы отважного, но рассеянного путешественника, старайтесь не пропустить ни одной его несуразицы, ни одной оплошности. Помните на ошибках мы учимся!

Отзывы о книге присылайте по адресу Москва, А-47, улица Горького, 43 Дом детской книги






— Как вы смели отпустить мальчика одного?! — напустился я на хозяина.

— Но он ушёл не один, — возразил тот, разводя руками. — За ним явился его законный отец, которого я давно знаю. Он очень торопился, сел в машину и уехал в неизвестном направлении.

Тут я пришёл в отчаяние, где и пребываю до настоящего времени. Потому дальнейшие сообщения откладываю до более благоприятного настроения.

ШЕСТОЕ ЗАСЕДАНИЕ КРМ

решили провести на свежем воздухе, так сказать шутя-гуляючи. День был морозный, солнечный. Приятно было не спеша пройтись по тихим переулкам старого Арбата.

Так уж получилось, что это заседание стало как бы продолжением предыдущего, внеочередного, оно началось с разбора любопытных числовых зависимостей.

— Как вы думаете, — спросил президент, который шёл пятясь, чтобы видеть всю нашу компанию разом. — Как вы думаете, какое число меньше 165 или 732? — И тут же сам себе ответил: — Ясно, 165. Значит, Магистр не ошибся, выбрав верблюда с табличкой «165». А Единичка и впрямь транжирка.

Тут он наскочил на прохожего и долго извинялся, после чего продолжал путь более удобным способом.

— Не забывай, — сказала Таня, — что 165 вовсе не обозначало плату за проезд. Чтобы узнать цену, надо было с этим числом произвести ещё целый ряд манипуляций.

— Хоть бы и так, — хорохорился Нулик. — Всё равно самое большое число, которое получится от перестановок цифр в числе 165, это 651. А 651 как-никак меньше, чем число 732, которое выбрала Единичка!

— А ведь правда — раздумчиво протянул Сева. — Даже наименьшее число, которое получается от перестановок цифр 7, 3 и 2 — число 237, — и то больше числа 165.

— Эх вы, теоретики! — поддразнила Таня. — Лучше подсчитайте, что должен был заплатить Магистр за своего верблюда и что Единичка — за своего.

— Это мы могим! — весело согласился президент и принялся писать веточкой на снегу. — Сперва сделаем все возможные перестановки цифр в числе 165. Вот они. 165, 156, 561, 516, 651 и 615. Теперь сложим эти числа. Получим. Не мешайте, а то я собьюсь получим 2664. Проверим.

— И проверять нечего, всё верно, — торопила Таня.

— Теперь подсчитаем, что должна была Заплатить Единичка, — сказал Сева. — Вот перестановки цифр числа 732: 732, 723, 273, 237, 327 и 372. Сложим их и получим что такое! Тоже 2664

— В чём же дело? — недоумевал президент. — Выходит, в этом случае любое трёхзначное число даст один и тот же результат? Или, может быть, 165 и 723 — числа специально подобранные?

— Уж конечно, специально, — сказала Таня

— Вот это да! Значит, проезд на любом верблюде стоил одинаково. Но как же удалось подобрать такие числа?

— А ты посмотри на них внимательней, — посоветовала Таня — Не найдётся ли у них какого-нибудь общего признака?

— Найдётся! — отвечал президент весьма язвительно. — Все цифры у них разные.

— Цифры действительно разные, — подтвердила Таня, — зато сумма этих цифр одна и та же. 12.

— Верно! — обрадовался Нулик. — 1 + 6 + 5 = 12. И 7 + 3 + 2 тоже равно двенадцати. Может быть, то же свойство было и у всех других чисел на верблюжьих табличках?

— Очень возможно. Недаром Единичка сказала, что погонщики в Террапантере — народ справедливый.

— И всё-таки. — Нулик сделал непреклонное лицо, — всё-таки я требую доказательства.

— Сей момент, ваше президентство! — насмешливо поклонилась Таня. — Будет сделано. Запишем любое трёхзначное число в общем виде. Это 100a + 10b + c. Понятно?

— Что за вопрос? Конечно! Здесь а — число сотен, b — число десятков, с — число единиц.

— Гениально! Теперь сделаем в этом числе все возможные перестановки цифр Напишем их сразу столбиком, а потом сложим.

— Не желаете ли, ваше президентство, преобразовать эту сумму? — спросила Таня.

— Желаю, — отвечал его президентство без особого энтузиазма. — Я бы я бы вынес 2(а + в + с) за скобки.

— Совершенно с вами согласна. Получится при этом:

2 (аb + c) (100 + 10 + 1)

— А это всё равно что 222 b + с), — подсчитал Нулик. — Но что из этого следует?

— Только то, что сумма перестановок зависит не от самого числа, а от суммы его цифр. И значит, все трёхзначные числа с одинаковой суммой цифр в этом случае всегда будут давать одно и то же число.

— Ха-ха! — выдохнул президент, несколько подавленный роскошным Таниным доказательством. — Выходит, для всех трёхзначных чисел с суммой цифр, равной двенадцати, ответ будет всегда 222X12, то есть 2664. Теперь хорошо бы ещё узнать, что получится, если взять четырёх-, пяти- или двенадцатизначные числа.

— Да то же самое, — сказала Таня, — только численный результат будет другой.

— Обязательно займусь этим на досуге! Жаль, досуга у меня маловато, — проворчал Нулик, постукивая ногой об ногу и выразительно поглядывая на уютные окна кафе, мимо которого мы как раз проходили.

Это было понятно, как безмолвный сигнал к атаке, и через мгновение мы уже находились внутри, за стеклянной дверью.

В кафе было тепло и, к счастью, безлюдно. Я говорю — к счастью, потому что Нулик, предвкушая лакомое угощение, взыграл и принялся носиться между столиками, описывая вокруг них замысловатые фигуры.

— Это я плутаю по лабиринту, — объяснил он, — скоро доберусь до мини-Тавра. Только вот где найти цепочку Афродиты?

Олег комически схватился за голову

— Опять этот младенец повторяет ошибки Магистра!

— Ничуть не бывало! — выкрутился президент. — Просто я вас подначиваю. Из педагогических соображений.

Олег понимающе кивнул.

— Из педагогических, говоришь? Ну, тогда тебе, стало быть, известно, что произносить надо Минотавр. И это тебе не мини, а совсем даже наоборот огромное чудище. Получеловек, полубык.

— А разве такие бывают? — наивно спросил Нулик, сразу позабыв о педагогических соображениях.

— Если верить древнегреческому мифу, один, во всяком случае, имелся. В давние времена, на острове Крит, у царя Миноса. Этот самый Минос построил на Крите такой лабиринт, что выбраться оттуда не было никакой возможности. Здесь и поселил царь своего прожорливого и свирепого человеко-быка, а в пищу ему отправлял провинившихся и обречённых в жертву богам людей. Плутая по запутанным коридорам, те в конце концов неминуемо попадали в пасть к Минотавру.

— Безобразие! — возмутился Нулик. — Неужели никто с этим чудищем не справился?

— Представь себе, такой человек нашёлся. Звали его, Тезей.

— Тезей, — повторил Нулик, хихикнув. — Тезей-ротозей

— То-то и оно, что не ротозей. Тезей сумел-таки разделаться с Минотавром и выбрался из лабиринта.

— С помощью цепочки Афродиты?

— Да нет, греческая богиня Афродита тут ни при чём. Помогла Тезею дочь Миноса — Ариадна. Она дала ему клубок ниток. Тезей, как вошёл в лабиринт, так сразу стал разматывать этот клубок. А когда победил Минотавра, пошел обратно вслед за нитью, сматывая её по пути. Так нить вывела его на свободу. Отсюда и пошло выражение «нить Ариадны» — нить, которая помогает выбраться из запутанных, затруднительных обстоятельств.

Президент озабоченно поджал губы.

— Теперь без катушки ниток в кармане шагу не сделаю! Мало ли что.

Опасения его были прерваны официанткой, которая спросила, что нам принести. Я заказал кофе, слоёных пирожков и трубочек с кремом.

Нулик опасливо зыркнул глазом.

— Боюсь, у меня на такой пир пресмыкающихся не хватит.

— Чего чего? — недоуменно переспросил Сева.

— Ну, скарабеев, — объяснил президент и очень обиделся, когда все дружно захохотали.

— Нет, он меня уморит! — сказал Сева, утирая глаза. — Какие же скарабеи — пресмыкающиеся? Они же вовсе насекомые. Попросту навозные жуки. А их, между прочим, в Древнем Египте считали священными и потому изображали на кольцах, печатях, всяких амулетах. Считалось, что скарабей приносит счастье.

— Да ну?! — Президент даже подпрыгнул. — Хочу скарабея, хочу скарабея! — затараторил он, как Буратино.

Пришлось мне призвать его к порядку.

— Ты где находишься?

— В кафе.

— Так и веди себя соответственно. А хочешь говорить, так говори что-нибудь дельное. Вот хоть разберись в задаче со скарабеями.

Но охота говорить у президента почему-то разом прошла, и за дело взялся Сева. Выступление его было кратким — оно и понятно, он решал задачу алгебраическим способом.

— Число скарабеев, принесенных Чёрным Львом, обозначим буквой а. Тогда число скарабеев, добытых Мистером-Твистером, равно 2а — ведь у него их было вдвое больше! Число скарабеев, которых отнял у Чёрного Льва Джерамини, обозначим через икс. Выходит, что у этого Льва осталось


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Новые рассказы Рассеянного Магистра"

Книги похожие на "Новые рассказы Рассеянного Магистра" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Левшин

Владимир Левшин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Левшин - Новые рассказы Рассеянного Магистра"

Отзывы читателей о книге "Новые рассказы Рассеянного Магистра", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.