Анатоль Абрагам - Время вспять, или Физик, физик, где ты был

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Время вспять, или Физик, физик, где ты был"
Описание и краткое содержание "Время вспять, или Физик, физик, где ты был" читать бесплатно онлайн.
Автобиография Анатолия Абрагама — французского ученого-физика, внесшего немалый вклад в развитие физики, в особенности послевоенной, в области исследований по ядерному магнетизму. А. Абрагам был научным руководителем физических исследований в Комиссариате атомной энергии, вел курс ядерного магнетизма в Колледж де Франс; награжден медалью Лоренца и первым удостоен премии Макса Планка. Автор пишет остро, яркими красками, без желания кого-нибудь обидеть, однако называя вещи своими именами.
Книга читается с большим интересом и предназначена широкому кругу физиков.
Блох после своего открытия ЯМР запатентовал невероятное число применений ЯМР, в том числе и примешивание парамагнитных веществ к диамагнитным жидкостям, чтобы укоротить время ядерной релаксации. Мне удалось доказать, что суть патентов Блоха, несмотря на внешнее сходство, была отличной от наших. До Оверхаузера о динамической поляризации не помышляли ни Блох, ни я.
Венцом этого дела была премия, которую в конце 1958 года мне вручил сам генерал де Голль и половину которой я затем разделил между Соломоном и Комбриссоном. Во время приема после вручения награды он беседовал несколько минут с Сюзан и со мной. Должен признаться, что он очаровал меня и еще больше Сюзан простотой и обходительностью своего обращения, несмотря на то, что обстоятельства его возвращения к власти семь месяцев назад меня далеко не очаровывали. Перед вручением награды ко мне подошел очень приятный господин (я подозреваю, но не смею уверять, что это был директор кабинета де Голля Помпиду, о котором в то время никто не слыхал) и сообщил мне, что не успели приготовить чек, который генерал должен был мне вручить, и поэтому в конверте, который он мне передаст, будет только поздравление правительства. Чек я получу через несколько дней. Может быть, он опасался, что я устрою генералу скандал, когда открою конверт?
*Спиновая температураПерехожу теперь к другому понятию, которое меня преследовало все эти годы и должно было значительно изменить мышление специалистов по ядерному магнетизму в ближайшие десятилетия. Понятие спиновой температуры возникло из того факта, что в твердых телах ядерные спины связаны друг с другом дипольными магнитными взаимодействиями гораздо сильнее, чем с решеткой. Гипотеза (так как это только гипотеза) спиновой температуры — это предположение, что спины находятся в состоянии внутреннего равновесия, достигнутого за время Т2, которое гораздо короче времени спин-решеточной релаксации Т1, и что это состояние может быть описано внутренней температурой, так называемой спиновой температурой, которая может быть совсем отличной от температуры решетки.
Эта гипотеза никогда не была доказана теоретически, и в 1957 году я посвятил свои усилия ее экспериментальному доказательству. Я придумал для этого опыт, который и осуществил с помощью американского физика Уорена Проктора (Warren Proctor), бывшего ученика Блоха, работавшего у меня два года. (Да, на этот раз я решил «испачкать ручки», ведь я сам был инженером-радиотехником из Сюпелека.) Принцип эксперимента следующий.
Эксперимент А. Ядерные спины образца (кристалла) приводят в состояние теплового равновесия с решеткой при температуре 300 К в сильном магнитном поле, где они приобретают намагниченность, измеряемую с помощью ЯМР. Затем образец размагничивают до нулевого поля за время, короткое по сравнению с T1, но длинное по сравнению с Т2. Можно предположить, что спины находятся все время в состоянии внутреннего равновесия, но изолированы от решетки. Если снова поднять поле до начального значения, можно наблюдать возвращение ядерной намагниченности к начальному значению (если учесть малые потери). Это совместимо с гипотезой спиновой температуры, но не является доказательством этой гипотезы. В частности, техникой ЯМР ничего нельзя узнать о состоянии спинов в нулевом поле. Если предположить, что систему спинов можно в каждый момент времени описать спиновой температурой, ее значение в нулевом поле легко подсчитать, записав условие сохранения энтропии спинов во время адиабатического размагничивания. Предположим для наглядности, что эта подсчитанная температура равняется 2 K (такова она была в нашем эксперименте).
Эксперимент В. Образец охлаждают в нулевом поле в криостате с температурой 2 K в течение времени, гораздо большего, чем Т1. В этом случае мы знаем, что спины находятся в состоянии равновесия при настоящей термодинамической температуре 2 K. Затем адиабатически поднимают магнитное поле до того же значения, что в начале эксперимента А, и измеряют с помощью ЯМР ядерную намагниченность. Если она равна той, что наблюдалась в эксперименте А, правильность гипотезы спиновой температуры доказана. Так оно и оказалось. Этот опыт изменил отношение многих физиков к понятию спиновой температуры, введенному впервые в электронный магнетизм двумя голландскими физиками Казимиром и дю Пре (du Pre), и в ядерный — Паундом и Парселлом.
Думаю, именно этот опыт положил конец враждебному отношению Блоха к понятию спиновой температуры. Что касается Парселла, который еще со времени своих первых экспериментов с Паундом был убежден в его правильности, про наш опыт с Проктором он сказал: «Дитя родилось давно, а сегодня вы принесли брачное свидетельство».
Спиновые системы имеют интересную особенность: спектр их энергии ограничен сверху (в отличие, например, от систем с кинетической энергией). Это дает возможность создать эти системы в состоянии отрицательной температуры. При отрицательной температуре вероятность найти систему на данном уровне энергии тем больше, чем выше энергия этого уровня. Очевидно, что состояние с отрицательной температурой бессмысленно для «нормальной» системы, т. е. такой, энергетический спектр которой не имеет верхней границы. Энергия такой системы в подобном состоянии была бы бесконечна.
Наоборот, для спиновых систем такие состояния не только мыслимы, но и создавались, и подробно изучались. Важно понять, что система с отрицательной температурой «горячее» любой системы с положительной температурой; если ее поместить в тепловой контакт с «нормальной» системой (которая может иметь только положительную температуру), она будет необратимо передавать энергию «нормальной» системе и достигнет состояния с бесконечной температурой, где все ее уровни одинаково населены, т. е. состояния максимального беспорядка. Только после неизбежного перехода через полный хаос сможет она достигнуть положительной температуры и прийти в тепловое равновесие с «нормальной» системой. Ниже, в главе «Запад и Восток», будет рассказано о неожиданном применении понятия отрицательных температур.
*Динамическая ядерная поляризация в твердых телахПерехожу к третьему явлению, обнаруженному в эти годы в нашей лаборатории, а именно к динамической ядерной поляризации (или ДЯП) в твердых телах. Ее разные проявления и приложения занимали нас почти четверть века.
В своей работе Оверхаузер очень настаивал на том, что электроны проводимости в металлах, насыщение резонанса которых приводило к громадному увеличению ядерной поляризации, подчинялись так называемой статистике Ферми, подробности которой я здесь опущу. В моей женевской работе я показал, что эта предпосылка была излишней, и предсказал возможность ДЯП в жидкостях, впоследствии доказанной в нашей лаборатории (о чем рассказано выше). Хорошо известно, что спины парамагнитных примесей, растворенных в жидкостях, где они играют роль спинов электронов проводимости, статистике Ферми не подчиняются. Не я один настаивал на необязательности статистики Ферми для эффекта Оверхаузера; Блох это тоже заметил и сделал заключение, что эффект Оверхаузера должен быть наблюдаем и в твердых диэлектриках. Но это заключение было в общем ошибочным, как я показал в своей женевской работе. Тщательный анализ роли электронных спинов в ядерной релаксации позволил обнаружить малозаметное, но существенное различие ее механизма в металлах и жидкостях, с одной стороны, и твердыми диэлектриками — с другой. Неверующий читатель может на свой страх и риск, обратиться к книге «Ядерный магнетизм» за доказательством. Но, если ДЯП с помощью эффекта Оверхаузера или его «унтерхау-зерского» варианта была невозможна в твердых диэлектриках, есть ли другой метод?
То, к чему я стремился (да и не только я), не было увеличением во много раз очень малых поляризаций, переходя, скажем, от одной миллиардной доли к нескольким миллионным, как в магнитометре для земного поля, или от нескольких миллионных долей к одной тысячной, как было с жидкостями в сильных полях. Целью была высокая абсолютная поляризация, близкая к стопроцентной, для ряда применений, которые я опишу позже.
Но при динамических увеличениях порядка нескольких сотен в лучшем случае (поле земли было специальным исключением) начинать приходилось с «естественной» ядерной поляризации в несколько тысячных, т. е. с температуры порядка 1 K. Для металлов можно было бы подумать об использовании обычного эффекта Оверхаузера, если бы при низких температурах так называемый скин-эффект не препятствовал проникновению в глубь металла насыщающего микроволнового поля. Что же касается жидкостей, то при температурах порядка 1 R они… не жидкости. Единственным исключением является изотоп гелия 3He (4Не не имеет ядерного спина). Между 1955 и 1960 годами у нас в лаборатории его не было, но позже мы, как и другие, безуспешно пытались поляризовать его с помощью эффекта Оверхаузера. Причины неудачи не поняты до сих пор.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Время вспять, или Физик, физик, где ты был"
Книги похожие на "Время вспять, или Физик, физик, где ты был" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Анатоль Абрагам - Время вспять, или Физик, физик, где ты был"
Отзывы читателей о книге "Время вспять, или Физик, физик, где ты был", комментарии и мнения людей о произведении.