» » » » Вокруг Света - Журнал «Вокруг Света» № 6 за 2005 год (2777)


Авторские права

Вокруг Света - Журнал «Вокруг Света» № 6 за 2005 год (2777)

Здесь можно скачать бесплатно " Вокруг Света - Журнал «Вокруг Света» № 6 за 2005 год (2777)" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая документальная литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Журнал «Вокруг Света» № 6 за 2005 год (2777)
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Журнал «Вокруг Света» № 6 за 2005 год (2777)"

Описание и краткое содержание "Журнал «Вокруг Света» № 6 за 2005 год (2777)" читать бесплатно онлайн.








«Сухой» контакт, возникающий между иглой и поверхностью, в контактной моде АСМ оказался очень неприятной вещью. Мало того что игла в таком режиме работы стирается и тупится, она к тому же активно перемещает адсорбированные атомы по поверхности образца и рвет биологические молекулы, лежащие на гладкой рабочей поверхности. Избавиться от этого неудобства удалось достаточно изящным способом: кантилевер с иголочкой на конце заставили колебаться на резонансной частоте с амплитудой в несколько десятков нм. Такой режим работы АСМ называют таппинг-модой, поскольку зонд как бы обстукивает исследуемую поверхность своей иголочкой.

Понять, почему такой колеблющийся кантилевер будет хорошо чувствовать поверхность, легко: достаточно коснуться звенящего колокольчика рукой. Колокольчик мгновенно замолчит, так как его колебания быстро затухнут, поскольку энергия начнет «уходить» в руку.

Колеблющийся зонд очень полюбился физикам, биологам и технологам, и сегодня именно такой режим работы чаще всего используется в АСМ. Возбуждая зонд на резонансной частоте и следя не только за амплитудой, но и за частотой собственных колебаний кантилевера, можно получить дополнительную информацию о механических свойствах исследуемого материала. С помощью иголочки, которая ударяет по поверхности сотни тысяч раз в секунду, как правило, не удается увидеть отдельные атомы, но это не так уж и важно для большинства технологических применений АСМ.

Используя колеблющийся зонд, можно вообще отказаться от сверхминиатюрных и мягких кантилеверов. Оказалось, что пьезорезонансные датчики, активно использующиеся в промышленности для измерения температуры, давления и массы, можно употребить и в такой деликатной области, как атомно-силовая микроскопия. Маленький камертон, изготовленный из пьезокерамики, отлично чувствует момент непосредственного контакта установленной на нем иглы с поверхностью и позволяет уверенно различать элементы структуры поверхности размером менее 10 нм в плоскости и 1 нм по высоте. При этом его собственная жесткость соизмерима с жесткостью пружины от подвески «Жигулей», а геометрические размеры измеряются миллиметрами.

Сенсорика атома

В туннельном микроскопе между острием и поверхностью нет прямого механического контакта, поскольку электроны летают между зондом и образцом через вакуумный промежуток. Однако электрические силы, действующие на острие и находящиеся под ним атомы, существуют, и они совсем не маленькие. Под действием этих сил атомы могут мигрировать по поверхности и даже улетать с острия. Это очень ценное свойство СТМ сегодня активно используется при работе с квантовыми точками и изолированными ионами.

Но эти электрические силы накладывают и определенные ограничения на жесткость зонда с иглой в СТМ. Мягкий зонд, используемый в классических АСМ, при прикладывании к нему электрического напряжения под действием этих сил мгновенно изгибается и врезается в поверхность. В этом состоит одна из принципиальных причин, затрудняющих совмещение в одном приборе с одним и тем же зондом туннельного и атомносилового режимов. Случайное внедрение иглы в образец приводит к его деформации и поломке иглы. Но нет худа без добра. Способность АСМ делать маленькие дырочки и рисовать тонкие черточки сегодня активно используют для изучения прочности и износоустойчивости композиционных и тонкопленочных материалов. Правда, далеко не любой из современных материалов можно проколоть и поцарапать, используя тонкие кантилеверы и обычные кремниевые иглы.

У сканирующих зондовых микроскопов существует достаточно много узких специализаций и конструкций, разработанных под конкретные задачи. Чудес не бывает, и совместить в одном приборе рекордные характеристики, полученные на уникальных образцах, невозможно. Однако попытки создания универсального прибора, позволяющего одновременно измерять форму и механические свойства поверхности, а также определять проводимость и локальную емкость в точке контакта иглы с образцом, не прекращаются. Уже существуют экземпляры атомносиловых микроскопов, умеющие все это делать и к тому же позволяющие измерять микротвердость алмазоподобных пленок и истираемость защитного покрытия из углеродных нанотрубок.

Для того чтобы решить столь обширный комплекс задач, приходится использовать токопроводящие алмазные иглы и пьезорезонансные зонды с жесткостью автомобильной пружины. Именно благодаря такой большой жесткости всей конструкции (более 10 000 Н/м) электрическое напряжение между иглой и образцом не мешает нормальной работе АСМ. С помощью таких приборов в режиме реального времени можно наблюдать окисление кремния после того, как его поцарапали алмазной иглой зонда.

Глаза боятся, а руки делают, и успехи сканирующей микроскопии как нельзя лучше доказывают эту древнюю истину. Былой пиетет перед атомами и тем, как они друг за друга цепляются, безвозвратно ушел в прошлое. Осознание возможности «на ощупь» исследовать вещество и определять его структуру кардинально изменило представления о технологических возможностях в мире атомов. Ведь без умения измерять и контролировать параметры материалов и конструкций на нанометровом масштабе не может быть и речи о том, чтобы что-то осмысленно создавать в области нанотехнологий, где каждый атом на счету.

Кирилл Гоголинский, кандидат технических наук

Владимир Решетов, кандидат физико-математических наук

Арсенал:

Автомат Калашникова – классика огня

«Холодная война», начавшаяся сразу по окончании Второй мировой, стимулировала быстрое перевооружение противостоящих сторон. Советскому Союзу в сложных условиях восстановления разрушенного хозяйства пришлось вести новые разработки практически по всем направлениям: ядерное и управляемое ракетное оружие, зенитные средства, бронетанковая и авиационная техника, оружие пехоты.

Создание новой системы пехотного вооружения входило в число приоритетных задач послевоенного времени. Главными направлениями стали – разработки высокоманевренных образцов автоматического индивидуального и коллективного оружия, сильных носимых противотанковых средств, повышение боевых свойств зенитных пулеметных установок.

Если самозарядный карабин и ручной пулемет под промежуточный патрон в целом оказались отработаны уже к концу войны, то с автоматом вопрос оказался сложнее. В 1946 году свои проекты автоматов представили Н.В. Рукавишников, А.А. Дементьев, Г.А. Коробов и молодой старший сержант М.Т. Калашников. Система Калашникова обратила на себя внимание, но нуждалась в существенной доработке и изменениях. В помощь Калашникову выделили ковровского конструктора А.А. Зайцева, позднее – В.И. Соловьева. Во время работ на Научно-испытательном полигоне минометного и стрелкового вооружения в Щурово большую помощь оказали офицеры полигона В.Ф. Лютый и А.А. Малимон, представитель ГАУ В.С. Дейкин.

На заключительный этап испытаний в январе 1947 года попали автоматы А.А. Булкина, А.А. Дементьева и М.Т. Калашникова. В опытном образце, представленном последним, уже определились основные черты знаменитой впоследствии «системы Калашникова». Вопреки мифу система АК не была заимствована у немецкого автомата МР.44 (см. «Вокруг света» № 11, 2004 г.). Автоматика и узел запирания несли следы влияния американской самозарядной винтовки «гаранд», ударно-спусковой механизм – чешской винтовки ZH-29, но все это сочеталось с оригинальными конструктивными решениями. Характерно, что автомат сразу разрабатывался в двух вариантах: с постоянным (для стрелковых и мотострелковых частей) и со складывающимся прикладом (для воздушно-десантных войск). Выбор образца был не прост. Все испытанные автоматы не соответствовали требованиям по кучности стрельбы очередями. Однако заказчик предпочел кучности снижение массы и размеров, уделив особое внимание надежности, живучести и простоте обращения. Образец Калашникова показал большую надежность и был вполне готов к массовому производству. В июне 1949 года на вооружение приняли АК – «автомат Калашникова образца 1947 г.» (из-за чего его именуют также АК-47). Его крупносерийное производство начал Ижевский машиностроительный завод («ИЖмаш»), где и обосновалась конструкторская группа Калашникова.

К 1953 году – времени внедрения в Советские Вооруженные Силы ядерного оружия – подоспело и новое поколение пехотного оружия: самозарядный пистолет Макарова (ПМ), автоматический пистолет Стечкина (АПС), самозарядный карабин Симонова (СКС), автоматы Калашникова (АК и АКС), ручной пулемет Дегтярева (РПД), ротный пулемет РП-46, модернизированные станковый пулемет Горюнова (СГМ) и пулемет Дегтярева – Шпагина (ДШКМ), новый крупнокалиберный пулемет Владимирова в варианте пехотного (ПКП) и зенитного (ЗПУ), ручной противотанковый гранатомет РПГ-2 и станковый СПГ-82. В странах НАТО работы над новым индивидуальным оружием пошли по иному пути. В Великобритании, Бельгии и США создали новые типы патронов. И хотя, скажем, британский 7-мм патрон был ближе к промежуточному, по настоянию американцев в 1953 году был принят американский патрон винтовочной мощности 7,62х51 (7,62-мм патрон НАТО). Если для пулеметов он был приемлем, то для индивидуального оружия не очень. Энергия отдачи была слишком велика, и для получения приемлемой меткости приходилось увеличивать размеры оружия и вести в основном одиночный огонь. Это относилось и к не очень удачной американской самозарядной винтовке М14, и к весьма успешным и широко распространившимся по миру штурмовым винтовкам– бельгийской FN FAL и германской G-3.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Журнал «Вокруг Света» № 6 за 2005 год (2777)"

Книги похожие на "Журнал «Вокруг Света» № 6 за 2005 год (2777)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Вокруг Света

Вокруг Света - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " Вокруг Света - Журнал «Вокруг Света» № 6 за 2005 год (2777)"

Отзывы читателей о книге "Журнал «Вокруг Света» № 6 за 2005 год (2777)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.