БСЭ БСЭ - Большая Советская Энциклопедия (ЯД)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ЯД)"
Описание и краткое содержание "Большая Советская Энциклопедия (ЯД)" читать бесплатно онлайн.
Амплитудный отбор осуществляется дискриминаторами, которые выполняются по схеме триггера Шмидта или на туннельных диодах (ТД) и формируют стандартный выходной импульс лишь в случае, если напряжение (или ток) на входе превысит заданный порог. Для амплитудной дискриминации часто используются схемы сравнения (компараторы). Эволюция схем совпадений и амплитудных дискриминаторов типична и для др. приборов Я. э. Вместо блоков, реализующих одну логическую функцию («И», «ИЛИ» и т. д.), разрабатываются универсальные многофункциональные устройства, логическую функцию которых можно задавать извне. Этому способствовало внедрение ЭВМ в Я. э. Вычислительная техника позволила создать автоматизированную аппаратуру с программно регулируемыми параметрами: ЭВМ управляет порогами срабатывания схем, временным разрешением, задержкой сигналов, логикой отбора событий, режимом работы измерительные системы и т. д. Внедряются в практику физического эксперимента также микропроцессоры и специализированные процессоры для распознавания образов, для накопления и предварит, обработки результатов измерений (рис. 3 ). Накопление экспериментальных данных происходит в ЭВМ с последующей переписью на магнитную ленту. Результаты предварительной обработки выводятся на экран электроннолучевой трубки, что позволяет оператору вмешиваться в ход измерений. ЭВМ управляет различными исполнительными устройствами: моторами, перемещающими детекторы или мишени, реле, коммутаторами сигналов и т. д.
Лит.: Ковальский Е., Ядерная электроника, пер. с англ., М., 1972; Электронные методы ядерной физики, М., 1973; Колпаков И. Ф., Электронная аппаратура на линии с ЭВМ в физическом эксперименте, М., 1974; Современная ядерная электроника, т. 1—2, М., 1974.
Ю. А. Семенов.
Рис. 3. Система накопления и обработки информации в ядерно-физическом эксперименте.
Рис. 2. Схема совпадений.
Рис. 1. Схема спектрометра заряженных частиц.
Ядерная энергетика
Я'дерная энерге'тика, отрасль энергетики , использующая ядерную энергию (атомную энергию) в целях электрификации и теплофикации; область науки и техники, разрабатывающая и использующая на практике методы и средства преобразования ядерной энергии в тепловую и электрическую. Основу Я. э. составляют атомные электростанции (АЭС). Источником энергии на АЭС служит ядерный реактор , в котором протекает управляемая цепная реакция деления ядер тяжёлых элементов, преимущественно 235 U и 239 Pu. При делении ядер урана и плутония выделяется тепловая энергия, которая преобразуется затем в электрическую так же, как на обычных тепловых электростанциях . При истощении запасов органического топлива (угля, нефти, газа, торфа) использование ядерного топлива — пока единственно реальный путь надёжного обеспечения человечества необходимой ему энергией. Рост потребления и производства электроэнергии приводит к тому, что в некоторых странах мира уже ощущается нехватка органического топлива и всё большее число развитых стран начинает зависеть от импорта энергоресурсов. Истощение или недостаток топливных энергоресурсов, удорожание их добычи и транспортирования стали одними из причин так называемого «энергетического кризиса» 70-х гг. 20 в. Поэтому в ряде стран ведутся интенсивные работы по освоению новых высокоэффективных методов получения электроэнергии за счёт использования других источников, и в первую очередь ядерной энергии.
Ни одна отрасль техники не развивалась так быстро, как Я. э.: в 1954 в СССР вступила в строй первая в мире АЭС (г. Обнинск), а в 1978 в СССР, США, Великобритании, Франции, Канаде, Италии, ФРГ, Японии, Швеции, ГДР, ЧССР, НРБ, Швейцарии, Испании, Индии, Пакистане, Аргентине и других странах уже дали ток свыше 200 АЭС, установленная мощность которых превысила 100 Гвт . Доля Я. э. в общем производстве электроэнергии непрерывно растет, и, по некоторым прогнозам, к 2000 году не менее 40% всей электроэнергии будет вырабатываться на АЭС. В программе энергетического строительства СССР также предусматривается опережающее развитие Я. э., особенно на Европейской части территории СССР.
Все АЭС основаны на ядерных реакторах двух типов: на тепловых и быстрых нейтронах. Реакторы на тепловых нейтронах, как более простые, получили во всём мире, в том числе и в СССР, наибольшее распространение. К моменту создания первой АЭС в СССР уже были разработаны физические основы цепной реакции деления ядер урана в реакторах на тепловых нейтронах; был выбран тип реактора — канальный, гетерогенный, уран-графитовый (теплоноситель — обычная вода). Такой реактор надёжен в эксплуатации и обеспечивает высокую степень безопасности, в частности за счёт дробления контура циркуляции теплоносителя. Перегрузку топлива можно производить «на ходу», во время работы реактора. Тепловая мощность реактора первой АЭС составила 30 Мвт , номинальная электрическая мощность АЭС — 5 Мвт . Пуском Обнинской АЭС была доказана возможность использования нового источника энергии. Опыт, накопленный при сооружении и эксплуатации этой АЭС, использован при строительстве других АЭС в СССР.
В 1964 была включена в Свердловскую энергосистему Белоярская атомная электростанция им. И. В. Курчатова с реактором на тепловых нейтронах электрической мощностью 100 Мвт , реактор которой существенно отличался от своего предшественника более высокими тепловыми характеристиками за счёт перегрева пара, осуществляемого в активной зоне реактора (т. н. ядерный перегрев). Второй блок Белоярской АЭС усовершенствованной конструкции и более мощный (200 Мвт ) был введён в эксплуатацию в 1967. Реактор имеет одноконтурную систему охлаждения. Основной недостаток ядерного перегрева — повышение температуры в активной зоне реактора, что приводит к необходимости применять температуростойкие материалы (например, нержавеющую сталь) для оболочек тепловыделяющих элементов (ТВЭЛ), а это в большинстве случаев ведёт к снижению общей эффективности использования ядерного топлива.
Установленные на первых АЭС уран-графитовые реакторы канального типа не имеют тяжёлого, громоздкого стального корпуса. строительство АЭС с такими реакторами представляется весьма заманчивым, поскольку оно освобождает заводы тяжёлого машиностроения от изготовления стальных изделий больших габаритов (корпус водо-водяного реактора имеет форму цилиндра диаметром 3—5 м , высотой 11—13 м при толщине стенок 100—250 мм ) с массой 200—500 т . Опыт эксплуатации первых уран-графитовых реакторов, работавших по одноконтурной схеме с кипящей водой в качестве теплоносителя, способствовал созданию одноконтурного уран-графитового кипящего реактора большой мощности — РБМК. Первый такой реактор электрической мощностью 1000 Мвт (РБМК-1000) был установлен в сентябре 1973 на Ленинградской АЭС им. В. И. Ленина (ЛАЭС), а в декабре 1973 первый блок ЛАЭС дал промышленный ток в электрическую сеть Ленэнерго. Второй блок также мощностью 1000 Мвт сдан в эксплуатацию в конце 1975. За 1977 ЛАЭС выработала 12,5 млрд. квт ×ч электроэнергии. Строительство ЛАЭС продолжается, она будет состоять из 4 блоков общей мощностью 4000 Мвт . Тепловая мощность каждого из 4 блоков ЛАЭС 3200 Мвт , 70 Гкал/ч (335 Гдж/ч ) тепла будет отбираться для нужд теплофикации. ЛАЭС является головной из строящихся АЭС в Европейской части СССР.
В 1976 вступил в строй первый блок Курской АЭС с реактором РБМК электрической мощностью 1000 Мвт . В 1977 вошла в строй Чернобыльская АЭС; заканчивается сооружение Смоленской АЭС и других также с несколькими реакторами РБМК-1000. В 1975 в Литовской ССР развернулось строительство Игналинской АЭС с 4 уран-графитовыми реакторами канального типа электрической мощностью 1500 Мвт каждый. Увеличение единичной мощности реактора РБМК на Игналинской АЭС до 1500 Мвт достигнуто фактически в габаритах реактора РБМК-1000 за счёт усовершенствования, главным образом конструкции ТВЭЛов. Форсирование мощности РБМК-1000 уменьшает удельные капиталовложения на сооружение АЭС, повышает её среднюю удельную мощность. Ведутся (1978) проработки и эксперименты по созданию реакторов типа РБМК электрической мощностью 2000 и 2400 Мвт .
В СССР с 1974 успешно эксплуатируется АТЭЦ — атомная теплоэлектроцентраль, построенная в районе г. Билибино (Магаданская область). Электрическая мощность Билибинской АТЭЦ 48 Мвт , выработка тепла для отопления и централизованного горячего водоснабжения достигает 100 Гкал/ч .
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ЯД)"
Книги похожие на "Большая Советская Энциклопедия (ЯД)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЯД)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ЯД)", комментарии и мнения людей о произведении.