» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ФУ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ФУ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ФУ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ФУ)
Рейтинг:
Название:
Большая Советская Энциклопедия (ФУ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ФУ)"

Описание и краткое содержание "Большая Советская Энциклопедия (ФУ)" читать бесплатно онлайн.








  2. Понятие пространства. Наиболее общими пространствами, фигурирующими в Ф. а., являются линейные (векторные) топологические пространства, т. е. линейные пространства Х над полем комплексных чисел  (или действительных чисел ), которые одновременно и топологические, причём линейные операции непрерывны в рассматриваемой топологии. Более частная, но очень важная ситуация возникает, когда в линейном пространстве Х можно ввести норму (длину) векторов, свойства которой являются обобщением свойств длины векторов в обычном евклидовом пространстве. Именно, нормой элемента x Î Х называется действительное число ||x || такое, что всегда ||x || ³ 0 и ||x || = 0 тогда и только тогда, когда x = 0;

||lx || = |l| ||x ||, l Î  x , если ||xnx ||  0.

  В большом числе задач возникает ещё более частная ситуация, когда в линейном пространстве Х можно ввести скалярное произведение — обобщение обычного скалярного произведения в евклидовом пространстве. Именно, скалярным произведением элементов x , у Î Х называется комплексное число (x , у ) такое, что всегда (x , x ) ³ 0 и (x , x ) = 0 тогда и только тогда, когда x = 0;

 , l, m Î  является нормой элемента x . Такое пространство называется предгильбертовым. Для конструкций Ф. а. важно, чтобы рассматриваемые пространства были полными (т. е. из того, что  для xm , xn Î X, следует существование предела , также являющегося элементом Х ). Полное линейное нормированное и полное предгильбертово пространства называются, соответственно, банаховым и гильбертовым. При этом известная процедура пополнения метрического пространства (аналогичная переходу от рациональных чисел к действительным) в случае линейного нормированного (предгильбертова) пространства приводит к банахову (гильбертову) пространству.

  Обычное евклидово пространство является одним из простейших примеров (действительного) гильбертова пространства . Однако в Ф. а. играют основную роль бесконечномерные пространства, т. е. такие, в которых существует бесконечное число линейно независимых векторов. Вот примеры таких пространств, элементами которых являются классы комплекснозначных (т. е. со значениями в , норма ||x || = ; банахово пространство Lp (T ) всех суммируемых с р -й (p ³ 1) степенью функций на Т , норма ; банахово пространство lp всех последовательностей таких, что , здесь   (множеству целых чисел), норма ||x || =(å|xj |p )1/ p ; в случае p = 2 пространства l2 и L2 (T ) гильбертовы, при этом, например, в L2 (T ) скалярное произведение ; линейное топологическое пространство D (), состоящее из бесконечно дифференцируемых функций на , каждая из которых финитна [т. е. равна нулю вне некоторого интервала (а , b )]; при этом xn  x, если xn (t ) равномерно финитны [т. е. (а , b ) не зависит от n ] и сходятся равномерно со всеми своими производными к соответствующим производным x (t ).

  Все эти пространства бесконечномерны, проще всего это видно для l2 : векторы ej = {0,..., 0, 1, 0,...} линейно независимы.

  С геометрической точки зрения наиболее простыми являются гильбертовы пространства Н , свойства которых больше всего напоминают свойства конечномерных евклидовых пространств. В частности, два вектора x , у Î Н называются ортогональными (x ^ y ), если (x , у ) = 0. Для любого x Î Н существует его проекция на произвольное подпространство F — линейное замкнутое подмножество Н , т. е. такой вектор xF , что xxF ^f для любого f Î F . Благодаря этому факту большое количество геометрических конструкций, имеющих место в евклидовом пространстве, переносится на Н , где они часто приобретают аналитический характер. Так, например, обычная процедура ортогонализации приводит к существованию в Н ортонормированного базиса — последовательности векторов ej , j Î , из Н таких, что ||ej || = 1, ej ^ ek при j ¹ k , и для любого x Î H справедливо «покоординатное» разложение

x = åxj ej (1)

где xj = (x , ej ), ||x || = å|xj |2 (для простоты Н предполагается сепарабельным, т. е. в нём существует счётное всюду плотное множество). Если в качестве Н взять L 2 (0, 2p) и положить , j =...,—1, 0, 1..., то (1) даст разложение функции x (t ) Î L 2 (0, 2p) в ряд Фурье, сходящийся в среднем квадратичном. Кроме того, соотношение (1) показывает, что соответствие между Н и l 2 ' {xj} , j Î  гильбертовых пространств Hj — конструкция, подобная образованию Н одномерными подпространствами, описываемому формулой (1); факторизация и пополнение: на исходном линейном пространстве Х задаётся квазискалярное произведение [т. е. возможно равенство (x , x ) = 0 для x ¹ 0], часто весьма экзотического характера, и Н строится процедурой пополнения Х относительно (.,.) после предварительного отождествления с 0 векторов x , для которых (x , x ) = 0; тензорное произведение  — образование его аналогично переходу от функций одной переменной f (x1 ) к функциям многих переменных f (x1 ,..., xq ); проективный предел  банаховых пространств — здесь  (грубо говоря), если  для каждого a; индуктивный предел  банаховых пространств X1 Ì X2 Ì..., здесь , если все xj , начиная с некоторого j0 , лежат в одном Xj0 , и в нём .  Две последние процедуры обычно применяются для построения линейных топологических пространств. Таковы, например, ядерные пространства — проективный предел гильбертовых пространств Н a , обладающих тем свойством, что для каждого a найдётся b такое, что h b Ì Н a , и это — т. н. вложение Гильберта — Шмидта [D () — пример ядерного пространства].

  Разработан важный раздел Ф, а., в котором изучаются пространства с конической структурой «x  0» (полуупорядоченностью). Пример такого пространства — действительное С (Т ), в нём считается x  0, если x (t ³)0 для всех t ÎT .

  3. Операторы (общие понятия). Функционалы. Пусть X , Y — линейные пространства; отображение A : X ® Y называется линейным, если для x , у Î X , l, m Î ,

где x1 ,..., xn и (Ax )1 ,..., (Ax ) n — координаты векторов x и Ax соответственно. При переходе к бесконечномерным линейным топологическим пространствам положение значительно усложняется. Здесь прежде всего необходимо различать непрерывные и разрывные линейные операторы (для конечномерных пространств они всегда непрерывны). Так, действующий из пространства L2 (а , b ) в него же оператор


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ФУ)"

Книги похожие на "Большая Советская Энциклопедия (ФУ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ФУ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ФУ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.