» » » » БСЭ БСЭ - Большая Советская Энциклопедия (УГ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (УГ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (УГ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (УГ)
Рейтинг:
Название:
Большая Советская Энциклопедия (УГ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (УГ)"

Описание и краткое содержание "Большая Советская Энциклопедия (УГ)" читать бесплатно онлайн.








  Б. А. Поповкин.

  У. в организме. У. — важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры , а также многочисленные низкомолекулярные биологически активные вещества — витамины, гормоны, медиаторы и др.). Значительная часть необходимой организмам энергии образуется в клетках за счёт окисления У. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции углеродистых соединений (см. Происхождение жизни ).

  Уникальная роль У. в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один др. элемент периодической системы. Между атомами У., а также между У. и др. элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность У. образовывать 4 равнозначные валентные связи с др. атомами У. создаёт возможность для построения углеродных скелетов различных типов — линейных, разветвленных, циклических. Показательно, что всего три элемента — С, О и Н — составляют 98% общей массы живых организмов. Этим достигается определённая экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет намного сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома У. лежат в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).

  Согласно общепринятой гипотезе А. И. Опарина , первые органические соединения на Земле имели абиогенное происхождение. Источниками У. служили метан (CH4 ) и цианистый водород (HCN), содержавшиеся в первичной атмосфере Земли. С возникновением жизни единственным источником неорганического У., за счёт которого образуется всё органическое вещество биосферы, является углерода двуокись (CO2 ), находящаяся в атмосфере, а также растворённая в природных водах в виде HCO- 3 . Наиболее мощный механизм усвоения (ассимиляции) У. (в форме CO2 ) — фотосинтез — осуществляется повсеместно зелёными растениями (ежегодно ассимилируется около 100 млрд. т CO2 ). На Земле существует и эволюционно более древний способ усвоения CO2 путём хемосинтеза ; в этом случае микроорганизмы-хемосинтетики используют не лучистую энергию Солнца, а энергию окисления неорганических соединений. Большинство животных потребляют У. с пищей в виде уже готовых органических соединений. В зависимости от способа усвоения органических соединений принято различать автотрофные организмы и гетеротрофные организмы . Применение для биосинтеза белка и др. питательных веществ микроорганизмов, использующих в качестве единственного источника У. углеводороды нефти,— одна из важных современных научно-технических проблем.

  Содержание У. в живых организмах в расчёте на сухое вещество составляет: 34,5—40% у водных растений и животных, 45,4—46,5% у наземных растений и животных и 54% у бактерий. В процессе жизнедеятельности организмов, в основном за счёт тканевого дыхания , происходит окислительный распад органических соединений с выделением во внешнюю среду CO2 . У. выделяется также в составе более сложных конечных продуктов обмена веществ. После гибели животных и растений часть У. вновь превращается в CO2 в результате осуществляемых микроорганизмами процессов гниения. Таким образом происходит круговорот У. в природе (см. Круговорот веществ ). Значительная часть У. минерализуется и образует залежи ископаемого У.: каменные угли, нефть, известняки и др. Помимо основные функции — источника У.— CO2 , растворённая в природных водах и в биологических жидкостях, участвует в поддержании оптимальной для жизненных процессов кислотности среды. В составе CaCO3 У. образует наружный скелет многих беспозвоночных (например, раковины моллюсков), а также содержится в кораллах, яичной скорлупе птиц и др. Такие соединения У., как HCN, CO, CCl4 , преобладавшие в первичной атмосфере Земли в добиологический период, в дальнейшем, в процессе биологической эволюции, превратились в сильные антиметаболиты обмена веществ.

  Помимо стабильных изотопов У., в природе распространён радиоактивный 14 C (в организме человека его содержится около 0,1 мккюри ). С использованием изотопов У. в биологических и медицинских исследованиях связаны многие крупные достижения в изучении обмена веществ и круговорота У. в природе (см. Изотопные индикаторы ). Так, с помощью радиоуглеродной метки была доказана возможность фиксации H14 CO- 3 растениями и тканями животных, установлена последовательность реакций фотосинтеза, изучен обмен аминокислот, прослежены пути биосинтеза многих биологически активных соединений и т.д. Применение 14 C способствовало успехам молекулярной биологии в изучении механизмов биосинтеза белка и передачи наследственной информации. Определение удельной активности 14 C в углеродсодержащих органических остатках позволяет судить об их возрасте, что используется в палеонтологии и археологии.

  Н. Н. Чернов.

  Лит.: Шафрановский И. И., Алмазы, М. — Л., 1964; Уббелоде А. Р., Льюис Ф. А., Графит и его кристаллические соединения, пер. с англ., М., 1965; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1972; Перельман А. И., Геохимия элементов в зоне гипергенеза, М., 1972; Некрасов Б. В., Основы общей химии, 3 изд., М., 1973; Ахметов Н. С., Неорганическая химия, 2 изд., М., 1975; Вернадский В. И., Очерки геохимии, 6 изд., М., 1954; Рогинский С. З., Шноль С. Э., Изотопы в биохимии, М., 1963; Горизонты биохимии, пер. с англ., М., 1964; Проблемы эволюционной и технической биохимии, М., 1964; Кальвин М., Химическая эволюция, пер. с англ., М., 1971; Лёви А., Сикевиц Ф., Структура и функции клетки, пер. с англ., 1971, гл. 7; Биосфера, пер. с англ., М., 1972.

Углерода галогениды

Углеро'да галогени'ды, соединения углерода с галогенами. У. г. обычно рассматривают как производные углеводородов, в которых водород полностью замещен на галоген.

  Простейшими У. г. являются тетрагалогениды общей формулы CX4 , молекулы которых имеют тетраэдрическое строение с расстояниями С—F, С—Сl, С—Вr и С—I, соответственно: (Å) 1,36; 1,76; 1,94; 2,12, и энергиями связи (кдж/моль ): 487; 340: 285; 214 или в ккал/моль 116; 81; 68; 51. При обычных условиях CF4 — газ (tkип —128 °С), CCl4 — жидкость (tпл —22,9 °С, tkип 76,8 °C), CBr4 и Cl4 — твёрдые тела (tпл 93,7 и 171 °С). Все тетрагалогениды практически нерастворимы в воде и растворимы в органических растворителях. В соответствии с уменьшением энергии связи устойчивость CX4 падает, а химическая активность возрастает при переходе от фтора к иоду. CF4 и CCl4 устойчивы к нагреванию и действию воздуха, света, кислот. Cl4 легко разлагается при нагревании. Только CF4 может быть получен непосредственно взаимодействием элементов. Один из способов синтеза CCl4 и CBr4 — реакция CS2 с галогенами. Cl4 получают при взаимодействии CCl4 с иодидами алюминия, висмута и др. металлов. Из тетрагалогенидов углерода наибольшее значение имеет четырёххлористый углерод . Известны также смешанные У. г., например CClF3 , CCBr2 Cl2 , С2 Вг2 F4 . Многие У. г. широко применяют в различных отраслях техники, например дифтордихлорметан CCl2 F2 и трихлорфторметан CCl3 F как хладоагенты в холодильных установках (фреоны ), тетрафторэтилен C2 F4 и трифторхлорэтилен C2 ClF3 — мономеры в производстве фторопластов , гексахлорэтан C2 Cl6 — заменитель камфоры, некоторые фторхлор-содержащие У. г.— компоненты синтетических масел .

  Лит.: Ахметов Н. С., Неорганическая химия, 2 изд., М., 1975.

  Б. А. Поповкин.

Углерода двуокись

Углеро'да двуо'кись, ангидрид угольной кислоты, углекислый газ, CO2 , оксид С (IV), высший окисел углерода. В 1756 Дж. Блэк показал, что при разложении карбоната магния выделяется газ — «связанный воздух» (его состав установил в 1789 А. Лавуазье ). У. д. бесцветный газ, имеющий слегка кисловатые запах и вкус; плотность 0,0019 г/см3 (0 °С. 0,1 Мн/м2 ), tпл —56,6 °С. tkип —78,5 °С, критическая температура 31 °С, критич. давление 7,62 Мн/м2 (75,2 кгс/см2 ). При атмосферном давлении и —78,5 °С, минуя жидкое состояние, затвердевает в белую снегообразную массу («сухой лёд»). Жидкая У. д. существует при комнатной температуре лишь при давлении больше 5,85 Мн/м2 (58,5 кгс/см2 ). Плотность жидкой CO2 0,771 г/см2 (20 °С), твёрдой 1,512 г/см3 . Молекула газообразной У. д. имеет симметричную форму О=С=О с расстоянием С—О 1,162 Å. Твёрдая CO2 кристаллизуется в кубической гранецентрированной решётке, а=5,62 Å. У. д. термически устойчива, диссоциирует на окись углерода и кислород только при температурах выше 2000 °С. Заметно растворима в воде (по массе %): 0,335 (0 °С); 0,169 (20 °С) и частично взаимодействует с ней с образованием угольной кислоты H2 CO3 . Растворяется в органических растворителях: ацетоне, бензоле, хлороформе, спиртах. Энергично соединяется с основаниями, давая карбонаты . CO2 не горит и не поддерживает горения. Только очень активные металлы восстанавливают её при высоких температурах (например, магний — при 600 °С, кальций — при 700 °С). CO2 взаимодействует с раскалённым углём: CO2 + С =2СО (реакция имеет большое значение в металлургии); с аммиаком при 160— 200 °С и давлении 10—40 Мн/м2 (100—400 кгс/см2 ): CO2 + 2NH3 = CO (NH2 )2 + + H2 O; в присутствии окиси меди с водородом, образуя метан.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (УГ)"

Книги похожие на "Большая Советская Энциклопедия (УГ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (УГ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (УГ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.