» » » » БСЭ БСЭ - Большая Советская Энциклопедия (СХ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (СХ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (СХ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (СХ)
Рейтинг:
Название:
Большая Советская Энциклопедия (СХ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (СХ)"

Описание и краткое содержание "Большая Советская Энциклопедия (СХ)" читать бесплатно онлайн.








  Лит.: 's-Gravesande A. van, А. van Schendel, zijn leven en werk, Amst., 1949; Stuiveling G., A van Schendels drie gestalten, в его кн.: Steekproeven, Amst., 1950: Heerikhuizen Fr. W. van, Het werk van A. van Schendel, Amst., 1961.

  И. В. Волевич.

Схенокаулон

Схенока'улон, сабадилла (Schoenocaulon), род многолетних луковичных трав семейства лилейных. Листья линейные, удлинённые. Цветки мелкие, в густом длинном колосовидном соцветии на верхушке безлистного стебля (стрелки). Околоцветник из 6 узких свободных листочков. Плод — трёхгнёздная коробочка с 6—9 семенами. Около 10 видов, на юге Северной Америки, в Центр, и Южной Америке, но преимущественно в Мексике. Наиболее известен С. лекарственный, или сабадилла лекарственная, вшивое семя (S. officinale), в горах Мексики, Гватемалы и Венесуэлы. Семена его ядовиты, содержат алкалоиды: вератридин, цевацин, сабадин, верагенин и верацевин. Настойка и отвар семян обладают инсектицидными свойствами, используются против паразитов животных и человека; препарат вератрин (сумма алкалоидов в виде настойки и мази) применяют при суставных болях и невралгиях.

  Лит.: Муравьева Д. А.., Гаммерман А. Ф., Тропические и субтропические лекарственные растения, М., 1974.

Схенокаулон лекарственный: а — цветок; б — коробочка; в — семя.

Схерия

Схе'рия, в древнегреческой мифологии сказочный остров, заселённый феаками; последнее местопребывание Одиссея перед возвращением на родину. В античности С. иногда отождествляли с островом Керкирой (Корфу).

Схидам

Схида'м (Schiedam), город и порт в Нидерландах, в провинции Южная Голландия, на берегу р. Ньиве-Маас (рукав Рейна), близ г. Роттердам. 79,8 тыс. жителей (1974). Судостроение, электротехническая, пищевая промышленность.

Схизантус

Схиза'нтус, шизантус (Schizanthus), род однолетних травянистых растений семейства паслёновых. Листья, как правило, перисторассечённые. Цветки в метельчатых соцветиях; венчик двугубый с цельными или рассеченными долями. Около 15 видов, в Южной Америке (Чили). Многие С. декоративны. В цветоводстве широко используют С. перистый (S. pinnatus), его сорта и гибриды, более известные под назв. С. визетонский (S. ´ wisetonensis), с цветками различной окраски.

Схизма

Схи'зма (греч. schísma, буквально — расщепление), разделение христианской церкви на католическую и православную. См. Разделение церквей.

Схизогнатизм

Схизогнати'зм (биологический), то же, что шизогнатизм.

Схима

Схи'ма (от среднегреч. schma — монашеское облачение, буквально — наружный вид, форма), высшая монашеская степень в православной церкви. Посвященные в С. — схимонахи и схимонахини (или схимники) — дают обеты выполнения более суровых монашеских правил, делящихся в зависимости от трудности на великую С. и малую С.

Схистоцерка

Схистоце'рка, насекомое отряда прямокрылых; то же, что пустынная саранча.

Сход сельский

Сход се'льский, собрание крестьян-домохозяев — членов сельского общества в дореволюционной России. Ведал приёмом в сельское общество и исключением из него, распределением земли между членами общества, раскладкой оброка, общинных и казённых повинностей, избирал сельскую старосту и др. должностных лиц. Подчинялся полиции, мировому посреднику, земскому участковому начальнику. Собрание крестьян, решавших хозяйственные вопросы в первые годы Советской власти, называлось земельным сходом.

Схода точка

Схо'да то'чка, кажущаяся точка пересечения параллельных линий при изображении в перспективе. На перспективных изображениях С. т. параллельных прямых находится в пересечении плоскости картины с лучом зрения, параллельным этим прямым. См. также Начертательная геометрия.

Сходимости точка

Сходи'мости то'чка функционального ряда , такая точка x0, что числовой ряд , составленный из значений функции un (x) в данной точке x0, является сходящимся. Аналогично определяется С. т. для функциональной последовательности.

Сходимость

Сходи'мость, математическое понятие, означающее, что некоторая переменная величина имеет предел. В этом смысле говорят о С. последовательности, С. ряда, С. бесконечного произведения, С. непрерывной дроби, С. интеграла и т. д. Понятие С. возникает, например, когда при изучении того или иного математического объекта строится последовательность более простых в известном смысле объектов, приближающихся к данному, то есть имеющих его своим пределом (так, для вычисления длины окружности используется последовательность длин периметров правильных многоугольников, вписанных в окружность; для вычисления значений функций используются последовательности частичных сумм рядов, которыми представляются данные функции, и т. п.).

  С. последовательности {an}, n = 1, 2,..., означает существование у неё конечного предела ; С. ряда конечного предела (называемого суммой ряда) у последовательности его частичных сумм , ; С. бесконечного произведения b1 b2... bn — конечного предела, не равного нулю, у последовательности конечных произведений pn = b1b2... bn, n = 1, 2,...; С. интеграла  от функции f (x), интегрируемой по любому конечному отрезку [а, b],— конечного предела у интегралов при b ® +µ, называется несобственным интегралом .

  Свойство С. тех или иных математических объектов играет существенную роль как в вопросах теории, так и в приложениях математики. Например, часто используется представление каких-либо величин или функций с помощью сходящихся рядов; так, для основания натуральных логарифмов е имеется разложение его в сходящийся ряд

 

  для функции sin х — в сходящийся при всех х ряд

 

Подобные ряды могут быть использованы для приближённого вычисления рассматриваемых величин и функций. Для этого достаточно взять сумму нескольких первых членов, при этом чем больше их взять, тем с большей точностью будет получено нужное значение. Для одних и тех же величин и функций имеются различные ряды, суммой которых они являются, например,

  ,

   .

При практических вычислениях в целях экономии числа операций (а следовательно, экономии времени и уменьшения накопления ошибок) целесообразно из имеющихся рядов выбрать ряд, который сходится «более быстро». Если даны два сходящихся ряда  и , и , . — их остатки, то 1-й ряд называется сходящимся быстрее 2-го ряда, если

  .

  Например, ряд

 

сходится быстрее ряда

  .

Используются и другие понятия «более быстро» сходящихся рядов. Существуют различные методы улучшения С. рядов, то есть методы, позволяющие преобразовать данный ряд в «более быстро» сходящийся. Аналогично случаю рядов вводится понятие «более быстрой» С. и для несобственных интегралов, для которых также имеются способы улучшения их С.

  Большую роль понятие С. играет при решении всевозможных уравнений (алгебраических, дифференциальных, интегральных), в частности при нахождении их численных приближённых решений. Например, с помощью последовательных приближений метода можно получить последовательность функций, сходящихся к соответствующему решению данного обыкновенного дифференциального уравнения, и тем самым одновременно доказать существование при определённых условиях решения и дать метод, позволяющий вычислить это решение с нужной точностью. Как для обыкновенных дифференциальных уравнений, так и уравнений с частными производными существует хорошо разработанная теория различных сходящихся конечноразностных методов их численного решения (см. Сеток метод). Для практического нахождения приближённых решений уравнений широко используются ЭВМ.

  Если изображать члены an последовательности {an} на числовой прямой, то С. этой последовательности к а означает, что расстояние между точками an и а становится и остаётся сколь угодно малым с возрастанием n. В этой формулировке понятие С. обобщается на последовательности точек плоскости, пространства и более общих объектов, для которых может быть определено понятие расстояния, обладающее обычными свойствами расстояния между точками пространства (например, на последовательности векторов, матриц, функций, геометрических фигур и т. д., см. Метрическое пространство). Если последовательность {an} сходится к а, то вне любой окрестности точки а лежит лишь конечное число членов последовательности. В этой формулировке понятие С. допускает обобщение на совокупности величин ещё более общей природы, в которых тем или иным образом введено понятие окрестности (см. Топологическое пространство).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (СХ)"

Книги похожие на "Большая Советская Энциклопедия (СХ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (СХ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (СХ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.