» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ВЕ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ВЕ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ВЕ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ВЕ)
Рейтинг:
Название:
Большая Советская Энциклопедия (ВЕ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ВЕ)"

Описание и краткое содержание "Большая Советская Энциклопедия (ВЕ)" читать бесплатно онлайн.








  Векторным произведением векторов a и b называют вектор, обозначаемый [a, b ] и удовлетворяющий следующим требованиям: 1) длина вектора [a, b ] равна произведению длин векторов a и b на синус угла j между ними (таким образом, если a и b коллинеарны, то [a, b ] = 0 ); 2) если a и b неколлинеарны, то [a, b ] перпендикулярен каждому из векторов a и b и направлен так, что тройка векторов a , b, [a, b ] является правой. Векторное произведение обладает следующими свойствами:

[a , b ] = [b , а ], [(la ), b ] = l [a , b ],

[с , (a + b )] = [с , a ] + [с , b ], [a , [b , с ]] = b (a , с ) с (a , b ),

([a , b ], [с , d ]) = (a , c )(b , d ) (a , d )(b , c ).

  Если в ортонормированном базисе i, j, k , образующем правую тройку, векторы a и b имеют соответственно координаты íX1 , Y1 , Z1 ý и íX2 , Y2 , Z2 ý, то [a, b ] = íY1 Z2 — Y2 Z1 , Z1 X2 — Z2 X1 , X1 Y2 — X2 Y1 ý. Понятие векторного произведения связано с различными вопросами механики и физики. Например, скорость v   точки М тела, вращающегося с угловой скоростью со вокруг оси l, равна [w, r ], где 

  Смешанным произведением векторов a, b и c называется скалярное произведение вектора [a, b ] на вектор с : ([a, b ], с ). Обозначается смешанное произведение символом abc . Смешанное произведение не параллельных одной плоскости векторов a , b и с численно равно объёму параллелепипеда, построенного на приведённых к общему началу векторах a , b и с , взятому со знаком плюс, если тройка a , b и с правая, и со знаком минус, если тройка левая. Если же векторы a , b и с параллельны одной плоскости, то abc = 0 . Справедливо также следующее свойство abc = bca = cab . Если координаты векторов a , b и с в ортонормированном базисе i, j, k , образующем правую тройку, соответственно равны íX1 , Y1 , Z1 ý, íX2 , Y2 , Z2 ý и íХ3 , Y3 , Z3 ý, то

 

  Вектор-функции скалярных аргументов. В механике, физике, дифференциальной геометрии широко используется понятие вектор-функции одного или нескольких скалярных аргументов. Если каждому значению переменной t из некоторого множества ít ý ставится в соответствие по известному закону определённый вектор r , то говорят, что на множестве ít ý задана вектор-функция (векторная функция) r = r (t ). Так как вектор r определяется координатами íx, y, z ý, то задание вектор-функции r = r (t ) эквивалентно заданию трёх скалярных функций: х = x (t ), y = y (t ), z = z (t ). Понятие вектор-функции становится особенно наглядным, если обратиться к так называемому годографу этой функции, то есть к геометрическому месту концов всех векторов r (t ), приложенных к началу координат О (рис. 7 ). Если при этом рассматривать аргумент t как время, то вектор-функция r (t ) представляет собой закон движения точки М, движущейся по кривой L — годографу функции r (t ).

  Для изучения вектор-функций важную роль играет понятие производной. Это понятие вводится следующим образом: аргументу t придаётся приращение Dt ¹ 0 и вектор Dr = r (t + Dt ) r (t ) (на рис. 7 это вектор ) множится на 1/Dt . Предел выражения Dr /Dt при Dt ® 0 называется производной вектор-функции r (t ) и обозначается r ' (t ) или dr /dt . Производная представляет собой вектор, касательный к годографу L в данной точке М. Если вектор-функция рассматривается как закон движения точки по кривой L, то производная r ' (t ) равна скорости движения этой точки. Правила вычисления производных различных произведений вектор-функций подобны правилам вычисления производных произведений обычных функций. Например,

  (r 1 , r 2 )' = (r '1 , r 2 ) + (r 1 , r '2 ),

  [r 1 , r 2 ] = [r '1 , r 2 ] + [r 1 , r '2 ].

  В дифференциальной геометрии вектор-функции одного аргумента используются для задания кривых. Для задания поверхностей пользуются вектор-функциями двух аргументов.

  Векторный анализ. В механике, физике и геометрии широко используются понятия скалярного и векторного поля. Температура неравномерно нагретой пластинки, плотность неоднородного тела представляют собой физические примеры соответственно плоского и пространственного скалярного поля. Векторное поле образует множество всех векторов скоростей частиц установившегося потока жидкости. Примерами векторных полей могут служить также поле силы тяжести, магнитное и электрическое напряжение электромагнитного поля.

  Для математического задания скалярных и векторных полей используются соответственно скалярные и векторные функции. Ясно, что плотность тела представляет собой скалярную функцию точки, а поле скоростей частиц установившегося потока жидкости — векторную функцию точки. Математический аппарат теории поля обычно называют векторным анализом. Для геометрической характеристики скалярного поля используются понятия линий и поверхностей уровня. Линией уровня плоского скалярного поля называется линия, на которой функция, задающая поле, имеет постоянное значение. Аналогично определяется поверхность уровня пространственного поля. Примерами линии уровня могут служить изотермы — линии уровня скалярного поля температур неравномерно нагретой пластинки.

  Обратимся к поверхности (линии) уровня скалярного поля, проходящей через данную точку М. При смещении по нормали к этой поверхности (линии) в точке М наблюдается максимальное изменение в этой точке функции f задающей поле. Это изменение характеризуется с помощью градиента скалярного поля. Градиент представляет собой вектор, направленный по нормали к поверхности (линии) уровня в точке М в сторону возрастания f этой точке. Величина градиента равна производной f указанном направлении. Обозначается градиент символом grad f . В базисе i, j k градиент grad f имеет координаты


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ВЕ)"

Книги похожие на "Большая Советская Энциклопедия (ВЕ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ВЕ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ВЕ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.