БСЭ БСЭ - Большая Советская Энциклопедия (АЗ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (АЗ)"
Описание и краткое содержание "Большая Советская Энциклопедия (АЗ)" читать бесплатно онлайн.
CaCN+ЗН2О=СаСО3+2NH3.
Свободный А. применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д. Жидкий А. находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара, газообразный А. в сжатом виде — в баллонах. Широко применяют многие соединения А. производство связанного А. стало усиленно развиваться после 1-й мировой войны и сейчас достигло огромных масштабов.
Лит.: Некрасов Б. В., Основы общей химии, т. 1, М., 1965; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963: Химия и технология связанного азота, [М.— Л.], 1934; КХЭ, т. 1, М.,1961.
Азот в организме
Азо'т в органи'зме, один из основных биогенных элементов, входящих в состав важнейших веществ живых клеток — белков и нуклеиновых кислот. Однако количество А. в о. невелико (1 — 3% на сухую массу). Находящийся в атмосфере молекулярный азот могут усваивать лишь некоторые микроорганизмы и сине-зеленые водоросли (см. Азотфиксация). Значительные запасы азота сосредоточены в почве в форме различных минеральных (аммонийные соли, нитраты) и органических соединений (азот белков, нуклеиновых кислот и продуктов их распада, т. е. ещё не вполне разложившиеся остатки растений и животных). Растения усваивают азот из почвы как в виде неорганических, так и некоторых органических соединений. В природных условиях для питания растений большое значение имеют почвенные микроорганизмы (аммонификаторы), которые минерализуют органический азот почвы до аммонийных солей. Нитратный азот почвы образуется в результате жизнедеятельности открытых С. Н. Виноградским в 1890 нитрифицирующих бактерий, окисляющих аммиак и аммонийные соли до нитратов. Часть усвояемого микроорганизмами и растениями нитратного азота теряется, превращаясь в молекулярный азот под действием денитрифицирующих бактерий. Растения и микроорганизмы хорошо усваивают как аммонийный, так и нитратный азот, восстанавливая последний до аммиака и аммонийных солей. Микроорганизмы и растения активно превращают неорганический аммонийный азот в органические соединения азота — амиды (аспарагин и глутамин) и аминокислоты. Как показали Д. Н. Прянишников и В. С. Буткевич, азот в растениях запасается и транспортируется в виде аспарагина и глутамина. При образовании этих амидов обезвреживается аммиак, высокие концентрации которого токсичны не только для животных, но и для растений. Амиды входят в состав многих белков как у микроорганизмов и растений, так и у животных. Синтез глутамина и аспарагина путём ферментативного амидирования глутаминовой и аспарагиновой кислот осуществляется не только у микроорганизмов и растений, но в определённых пределах и у животных.
Синтез аминокислот происходит путём восстановительного аминирования ряда альдегидокислот и кетокислот, возникающих в результате окисления углеводов (В. Л. Кретович), или путём ферментативного переаминирования (А. Е. Браунштейн и М. Г. Крицман, 1937). Конечными продуктами усвоения аммиака микроорганизмами и растениями являются белки, входящие в состав протоплазмы и ядра клеток, а также отлагающиеся в виде запасных белков. Животные и человек способны лишь в огранической мере синтезировать аминокислоты. Они не могут синтезировать 8 незаменимых аминокислот (валин, изолейцин, лейцин, фенилаланин, триптофан, метионин, треонин, лизин), и потому для них основным источником азота являются белки, потребляемые с пищей, т. е., в конечном счёте, — белки растений и микроорганизмов.
Белки во всех организмах подвергаются ферментативному распаду, конечными продуктами которого являются аминокислоты. На следующем этапе в результате дезаминирования органический азот аминокислот вновь превращается в неорганический аммонийный азот. У микроорганизмов и особенно у растений аммонийный азот может использоваться для нового синтеза амидов и аминокислот. У животных обезвреживание аммиака, образующегося при распаде белков и нуклеиновых кислот, осуществляется путём синтеза мочевой кислоты (у пресмыкающихся и птиц) или мочевины (у млекопитающих, в том числе и у человека), которые затем выводятся из организма. С точки зрения обмена азота растения, с одной стороны, и животные (и человек), с другой, отличаются тем, что у животных утилизация образующегося аммиака осуществляется лишь в слабой мере — большая часть его выводится из организма; у растений же обмен азота «замкнут» — поступивший в растение азот возвращается в почву лишь вместе с самим растением.
Лит.: Прянишников Д. Н., Азот в жизни растений и в земледелии СССР, М. — Л., 1945; Браунштейн А. Е., Главные пути ассимиляции и диссимиляции азота у животных, «Баховские чтения», 1957, т. 12; Кретович В. Л., Биохимия автотрофной ассимиляции азота, там же, 1961, т. 16; Фердман Д. Л., Биохимия, 3 изд., М., 1966; Кретович В. Л. и Каган 3. С., Усвоение и превращение азота у растений, в кн.: Физиология сельскохозяйственных растений, т. 2, М., 1967.
В. Л. Кретович, З. С. Каган.
Азота окислы
Азо'та о'кислы, соединения азота с кислородом. Известны N2O, NO, N2O3, NO2 (и его димер N2O4), N2O5; есть сведения о существовании NO3, не выделенного в свободном состоянии. При высокой температуре в пламени вольтовой дуги, а в природе — при электроразряде из смеси азота с кислородом образуется окись азота NO, которая при охлаждении переходит в NO2. Другие А. о. получают косвенным путём. N2O5 — твёрдое вещество; остальные окислы при обычных условиях газообразны.
Закись азота N2O — бесцветный газ со слабым приятным запахом и сладковатым вкусом; вдыхание смеси воздуха с N2O вызывает состояние, напоминающее опьянение (отсюда название — веселящий газ). Плотность при 0°С и 101 325 н/м2 (760 мм рт. ст.) 1,9804 кг/м3, tкип — 89,5°С, tпл — 102,4°С. 1 объём N2O при 5°C растворяет 1,048 объёма N2O. Химически N2O с водой, растворами кислот и щелочей не реагирует, кислородом не окисляется. Выше 500°C разлагается: 2N2O = 2N2 + O2; поэтому при повышенных температурах действует как сильный окислитель и поддерживает горение. Получают N2O термическим разложением нитрата аммония: NH4NO3=N2O+ 2H2O. В медицине служит для общей анестезии.
Окись азота NO — бесцветный газ, буреющий при соприкосновении с воздухом вследствие окисления до NO2. Плотность при 0°С и 101 325 н/м2 (760 мм рт ст) 1,3402 кг/м3, tкип—151,8°С, tпл—163,6°С. В воде мало растворима (0,0738 объёма в 1 объёме H2O при 0°С). С водой, кислотами и щелочами химически не взаимодействует. Образует многочисленные продукты присоединения, например нитрозилхлорид NOCI. Получают NO действием разбавленной азотной кислоты на некоторые металлы, например: 3Cu + 8HNO3= 3Cu(NO3)2 + 4H2O + 2NO. Окись азота — важный полупродукт окисления аммиака при получении азотной кислоты.
Азотистый ангидрид (трёхокись азота) N2O3 — в обычных условиях неустойчивое соединение. Разлагается уже при 0°С:
Около 3,5°С кипит с разложением, при 25°C содержит только 10% недиссоциированного N2O3. При низкой температуре может быть получен в виде тёмно-голубой жидкости, при сильном охлаждении — светло-голубой массы с tпл —102°С. С водой образует азотистую кислоту: N2O3 + H2O = 2HNO2, со щелочами — соли (см. Нитриты). N2O3 получают по реакции: N2O4+ 2NO = 2N2O3; практического применения не находит.
Двуокись азота NO2 — бурый газ с удушливым запахом, при 21,15°C — буро-красная жидкость, бледнеющая при дальнейшем охлаждении из-за образования четырёхокиси азота N2O4 , tотв —11,2°С. Взаимодействует с водой с образованием азотной кислоты и окиси азота: 3NO2 + H2O = 2HNO3 + NO; со щелочами образует нитраты и нитриты. Двуокись азота — сильный окислитель; в токе NO2 энергично сгорают уголь, сера, фосфор, органические соединения. В промышленности NO2 получают окислением NO при производстве азотной кислоты, в лаборатории — термическим разложением некоторых нитратов: 2Pb(NO3)2 = 2PbO + O2 + 4NO2. Применяют NO2 как нитрующий агент (см. Нитрование органических соединений).
Азотный ангидрид (пятиокись азота) N2O5 — бесцветные очень летучие кристаллы. Крайне неустойчив и взрывоопасен. Взаимодействует с водой, давая азотную кислоту: N2O5 +Н2O = 2HNO3, со щелочами образует соли — нитраты. В лаборатории получают по реакции: 2HNO3 + P2O5 = N2O5+ 2HPO3. Практического применения не находит. Все А. о. физиологически активны.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (АЗ)"
Книги похожие на "Большая Советская Энциклопедия (АЗ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (АЗ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (АЗ)", комментарии и мнения людей о произведении.