У Клоксин - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ"
Описание и краткое содержание "ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ" читать бесплатно онлайн.
Книга английских специалистов, содержащая описание основ логического программирования и особенностей языка Пролог – базового языка ЭВМ пятого поколения. Области применения этого языка связаны с разработкой экспертных систем, интеллектуальных баз данных, обработкой естественного языка, разработкой компиляторов ЭВМ. Книга полезна для первого ознакомления с языком Пролог.
Мы можем значительно упростить эту программу, если уверены, что ответ на вопрос всегда существует и если нам нужно только первое решение. В этом случае отпадает необходимость в проверке на зацикливание. Попробуйте самостоятельно выяснить, почему это так.
К сожалению, путь через наименьшее число городов не обязательно будет самым кратчайшим по километражу. До сих пор мы не принимали во внимание информацию о расстояниях, имеющуюся в нашем графе. Если же мы добавим к нашему графу несколько фиктивных городов, чтобы получить:
а(ньюкасл,карлайл,58).
а(карлайл,пенрит,23).
а(городБ,городаА,15).
а(пенрит, дарлингтон,52).
а(городБ,городВ,10).
а(уэркингтон, карлайл, 33).
а(уэркингтон,городВ,5).
а(уэркингтон,пенрит,39).
а(дарлингтон,городА,25).
то путь, кратчайший по километражу, фактически будет построен последним, поскольку он проходит через большое число городов. С каждым путем, который может быть продолжен, нам нужно связать и поддерживать в процессе работы программы указатель текущей длины этого пути. Тогда программа будет всегда продлевать путь с наименьшим километражем. Такая стратегия называется поиском по критерию первый-лучший. Будем теперь представлять путь в списке альтернативных путей в виде структуры г(М, П), где М – общая длина пути в километрах, а П – список мест, где мы уже побывали. Модифицированный предикат переходЗ находит кратчайший путь в списке альтернатив. Предикат кратчайший выделяет кратчайший путь в отдельный список, а остальные пути – в другой список. Предикат продлить находит все допустимые продолжения текущего кратчайшего пути и добавляет их к списку. Это в свою очередь требует новой версии предиката следузел, которая прибавляет расстояние до следующего города к уже вычисленному расстоянию. В целом программа выглядит так:
переходЗ (Пути,Цель,Путь):-кратчайший (Пути,Кратчайший,ОстПути), продлить(Кратчайший,Цель,ОстПути,Путь).
продлить(г(Расст,Путь),Цель,_,Путь):- Путь = [Цель|_].
продлить(г(Расст,[Послед| Бывали]),Цель,Пути,Путь):-найтивсе(г(D1,[Z,Послед|Бывали]),следузел(Послед,Бывали,Z,Расст,D1),Список), присоединить(Список,Пути,НовПути), переходЗ(НовПути,Цель,Пути).
кратчайший([Путь[Пути],Кратчайший,[ПутьЮст]):-кратчайший(Пути,Кратчайший,Ост), короче(Кратчайший,Путь),!.
кратчайший(Путь|Ост],Путь,Ост). короче(г(М1,_),г(М2, _):- M1 ‹ М2.
следузел(Х,Бывали,Y,Расст,НовРасст):-(a(X,Y,Z); a(Y,X,Z)),not(принадлежит(Y,Бывали)),НовРасст is Расст+Z.
Чтобы использовать эту программу, необходимо задать вопрос, содержащий предикат переход, определенный следующим образом:
переход (Старт,Цель,Путь):-переход3([г(0,[Старт])],Цель,R), обр(R,Путь).
Эта новая программа успешно строит возможные пути в по-рядке возрастания их фактической протяженности. Может быть, вам захочется изменить ее так, чтобы вместе с ответами она печатала длины различных путей.
Мы лишь затронули вопрос о возможных способах организации поиска по графу. Сведения о том, как осуществлять поиск по графу с использованием более эффективных критериев, чем «первый лучший», можно найти в литературе по искусственному интеллекту. Например: Nilsson N. Principles of Artificial Intelligence, Springer-Verlag, 1982[10] и Winstone P. Artificial Intelligence, (second edition), Addison-Wesley, 1984.[11]
7.10. Просеивай Двойки, Просеивай Тройки
Просеивай Двойки,
Просеивай Тройки,
Эратосфена Решето,
Пусть все кратные им отсеем,
Простые числа получим зато.
Простое число – это целое положительное число, которое делится нацело только на 1 и на само себя. Например, число 5 – простое, а число 15 – нет, поскольку оно делится на 3. Один из методов построения простых чисел называется «решетом Эратосфена». Этот метод, «отсеивающий» простые числа, не превышающие N, работает следующим образом:
1. Поместить все числа от 2 до N в решето.
2. Выбрать и удалить из решета наименьшее число.
3. Включить это число в список простых.
4. Просеять через решето (удалить) все числа, кратные этому числу.
5. Если решето не пусто, то повторить шаги 2-5.
Чтобы перевести эти правила на Пролог, мы определим предикат целые для получения списка целых чисел, предикат отсеять для проверки каждого элемента решета и предикат удалить для создания нового содержимого решета путем удаления из старого всех чисел, кратных выбранному числу. Это новое содержимое опять передается предикату отсеять. Предикат простые - это предикат самого верхнего уровня, такой что простые(N, L) конкретизирует L списком простых чисел, заключенных в диапазоне от 1 до N включительно.
простые(Предел,Рs):- целые(2,Предел,Is),отсеять(Is,Рs).
целые (Min,Max,[Min|Oct]):-Min=‹Max,!, М is Min+1,целые(М,Мах,Ост).
целые(_,_,[]).
отсеять([],[]).
отсеять([I|Is],[I|Ps]):-удалить(I,Is,Нов),отсеять(Нов,Рs).
удалить(Р,[],[]).
удалить (P,[I|Is],[I|Nis]):-not(0 is I mod Р),!,удалить(Р,Is,Nis).
удалить (P,[I|Is],Nis):-0 is I mod Р,!,удалить(Р,Is,Nis).
Продолжая эту арифметическую тему, рассмотрим Пролог-программу, реализующую рекурсивную формулировку алгоритма Евклида для нахождения наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК) двух чисел. Целевое утверждение нод(I,J,K) доказуемо, если K является наибольшим общим делителем чисел I и J. Целевое утверждение нок(I,J,K) доказуемо, если K является наименьшим общим кратным чисел I и J:
нод(I,0,I).
нод(I,J,K):- R is I mod J, нод(J,R,K).
нок(I,J,K):- нод(I,J,R), K is (I*J)/R.
Заметим, что из-за особенностей способа вычисления остатка эти предикаты не являются «обратимыми». Это означает, что для того чтобы они работали, необходимо заблаговременно конкретизировать переменные I и J.
Упражнение 7.10. Если числа X, Y и Z таковы, что квадрат Z равен сумме квадратов X и Y (т. е. если Z²=X²+Y²), то про такие числа говорят, что они образуют Пифагорову тройку. Напишите программу, порождающую Пифагоровы тройки. Определите предикат pythag такой что, задав вопрос
?- pythag(X,Y,Z).
и запрашивая альтернативные решения, мы получим столько разных Пифагоровых троек, сколько пожелаем. Подсказка: используйте предикаты, подобные целое_число из гл. 4.
7.11. Символьное дифференцирование
Символьным дифференцированием в математике называется операция преобразования одного арифметического выражения в другое арифметическое выражение, которое называется производной. Пусть U обозначает арифметическое выражение, которое может содержать переменную х. Производная от U по х записывается в виде dU/dx и определяется рекурсивно с помощью некоторых правил преобразования, применяемых к U. Вначале следуют два граничных условия. Стрелка означает «преобразуется в»; U и V обозначают выражения, а с – константу:
dc/dx → 0
dx/dx → 1
d(-U)/dx → -(dU/dx)
d(U+V)/dx → dU/dx+dV/dx
d(U-V)/dx → dU/dx-dV/dx
d(cU)/dx → c(dU/dx)
d(UV)/dx → U(dV/dx) + V(dU/dx)
d(U/V)dx → d(UV-1)/dx
d(Uc)/dx → cUc-l(dU/dx)
d(lnU)/dx → U-1(dU/dx)
Этот набор правил легко написать на Прологе, поскольку мы можем представить арифметические выражения как структуры и использовать знаки операций как функторы этих структур. Кроме того, сопоставление целевого утверждения с заголовком правила мы можем использовать как сопоставление образцов. Рассмотрим цель d(E,X, F), которая считается согласованной, когда производная выражения E по константе[12] X есть выражение F. Помимо знаков операций +, -, *, /, которые имеют встроенные определения, нам нужно определить операцию ^, такую, что X^Y означаете xy, а также одноместную операцию ~, такую что ~Х означает «минус X». Эти определения операций введены исключительно для того, чтобы облегчить распознавание синтаксиса выражений. Например, после того как d определен, можно было бы задать следующие вопросы:
?- d(x+1,x,X).
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ"
Книги похожие на "ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "У Клоксин - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ"
Отзывы читателей о книге "ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ", комментарии и мнения людей о произведении.