Авторские права

Лев Бобров - По следам сенсаций

Здесь можно скачать бесплатно "Лев Бобров - По следам сенсаций" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Молодая гвардия, год 1966. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Лев Бобров - По следам сенсаций
Рейтинг:
Название:
По следам сенсаций
Автор:
Издательство:
Молодая гвардия
Год:
1966
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "По следам сенсаций"

Описание и краткое содержание "По следам сенсаций" читать бесплатно онлайн.



Не читайте эту книгу, если вас не интересует:

— можно ли помолодеть, если пить талую воду;

— к чему приводит ношение магнитных браслетов и поясов;

— как узнать характер человека по его почерку;

— наступит ли конец света;

— взлетит ли в космос знаменитая машина Дина;

— когда беспомощна всемогущая кибернетика?

Но если вы, человек, несомненно, любознательный, решитесь всё же купить эту книгу, помните, что начать чтение можно с любой из страниц.

Только имейте в виду: здесь нет ни слова о ясновидении, кожном зрении, снежном человеке, гипнопедии, умных животных, летающих тарелках и т. п. Разве одними этими темами исчерпывается самое интересное в науке? Шесть очерков в этой книге — не просто цветастый букет разномастных научных сенсаций. Каждая из них — повод для того, чтобы помочь читателю взрыхлить глубинные пласты научных проблем, пласты, которые всегда подстилают лежащее на поверхности газетное или журнальное сообщение. И пусть читатель не сетует, если вдруг автор, ухватившись за конец нити и начав разматывать клубок сенсаций, вдруг уходит от темы.

Сенсации тем и хороши, что они наталкивают на увлекательные раскопки, разносторонние поиски, неожиданные сопоставления. И разве не заманчиво для молодого читателя, встретившего разноголосицу научных мнений, самостоятельно отправиться по одной из многочисленных исследовательских троп, где его обязательно ждут замечательные находки?

Ещё одно, последнее и серьёзное предупреждение: эта книга; не имеющая определённого начала, не дописана и до конца. Можно было бы наращивать главу за главой, охватывая всё новые темы, но, как учил незабвенный Козьма Прутков, нельзя объять необъятного! Да и дописать конец каждой главы ещё предстоит науке и технике, учёным и инженерам — быть может, вам, дорого» читатель, — а почему бы и нет? И автор будет рад прочитать новую книгу, где вопросительные крючки сегодняшних сомнений выпрямятся в восклицательные знаки завтрашних утверждений.






Вот и получается, что у геометрического целого (линии) может появиться совершенно новое качество, отсутствовавшее у его частей — непротяженных, не имеющих размеров точек, когда мощность множества переходит определённый количественный Рубикон. Вспомните линию, составленную из одних рациональных точек! Это множество всюду плотно. Если мы прибегаем к чертежу, то нам и впрямь придётся рисовать сплошную линию — иначе не изобразишь множество всех рациональных точек. Но нет, эта линия разрывна. И разрывна в каждой точке! Лишь континуум обладает непрерывностью, сплошностью. Этого, разумеется, не дано было знать Зенону, для которого все точки-нули, равно как и все бесконечности, выглядели «на одно лицо».

И всё же, даже разобравшись в этих премудростях, математики XX века не смогли окончательно отделаться от кошмара зеноновских противоречий, Канторова теория множеств, которая, как считалось, обезвредила апории Зенона, сама оказалась подорванной изнутри таившимися в ней противоречиями.

У английского писателя Лоуренса Стерна есть роман «Жизнь и мнения Тристрама Шенди, джентльмена». Это весьма своеобычный роман. Повествование ведётся от первого лица, причём герою понадобилось целых двести пятьдесят страниц, чтобы описать своё появление на свет. Лишь в третьей книге мать Шенди разрешается от бремени Тристрамом, джентльменом, а в шестой маленький джентльмен впервые удостаивается чести быть облачённым в штаны.

О странном литературном персонаже вспоминает не кто иной, как Бертран Рассел. Предположим, говорит английский учёный, какой-нибудь новоявленный Тристрам Шенди будет затрачивать по году на описание каждого дня своей жизни. Сумеет ли он накропать мемуары?

Не сумеет, это ясно: человек смертен. А если бы Тристрам Шенди стал вдруг бессмертным? Что тогда? Тогда каждый день найдёт своё отражение в его необычной летописи. Другое дело — странное жизнеописание никогда не закончится. Но каждому дню найдётся соответствующий год, причём количество дней и количество годов в их нескончаемой череде равны, вернее, равномощны. Это бесконечности одного класса. Точно так же последовательность всех чётных чисел равномощна натуральному ряду, включающему и чётные и нечётные числа: 1, 2, 3, 4, 5, 6 и так далее. А натуральный ряд равномощен множеству всех рациональных чисел.

Как видно, правило «целое не равно своей части» утрачивает силу в странном мире бесконечного. А вот и другой вывод, ещё пуще насмехающийся над немощью человеческой интуиции.

Мы уже выяснили: континуум (совокупность всех без исключения точек отрезка) обладает гораздо большей мощностью, нежели редко стоящие на числовой оси метки натурального ряда или даже множество всех рациональных точек, плотное везде. Тем не менее совершенно неожиданным и поистине ошеломляющим выглядит такой Канторов итог: один ли ангстрем, один ли световой год содержат одинаковое «количество» (речь идёт о бесконечном множестве) точек. Уму непостижимо, но бесконечная прямая вмещает не больше точек, чем конечный отрезок! И ещё один сюрприз: трёхмерная фигура (скажем, куб) не богаче точками, чем двумерная (квадрат), а двумерная поверхность — чем просто линия. Целых три года (с 1871 по 1874) Кантор пытался доказать, что взаимно однозначное соответствие между точками отрезка и точками квадрата невозможно. Мучительные поиски долго оставались безуспешными. И вдруг совершенно неожиданно для себя учёный пришёл к совершенно противоположному результату! Он проделал то самое построение, которое считал неосуществимым. Потрясённый своим открытием, он написал математику Дедекинду: «Я вижу это, но не верю этому». А вскоре убедился, что не только квадрат, но и куб равномощен линии…

Этого не знал Зенон. Ньютон тоже. Но это со всей непреложностью доказал Георг Кантор — человек, впервые отважившийся объять необъятное, сосчитать неисчислимое, измерить неизмеримое. Он проник с числом и мерой в таинственный и странный мир, над входом в который красуется кабалистический символ бесконечности — oo, и который исстари вселял в души человеческие мистический хоррор инфинити — ужас перед бесконечным.

Беспрецедентное арифметическое беззаконие потрясло математиков. Но это было ещё только началом. Теория множеств Кантора оказалась чреватой куда более серьёзными парадоксами.

На рубеже XIX и XX столетий выяснилось, что логические рассуждения, которыми оперировал Кантор, ведут к неразрешимым противоречиям. Первый нокаут канторовские построения получили от итальянского учёного Бурали-Форти, сформулировавшего парадокс наибольшего порядкового числа. Однако настоящей сенсацией оказалась знаменитая антиномия Рассела, опубликованная в 1903 году и получившая широкую известность под названием «парадокса брадобрея».

Солдату приказали стать полковым цирюльником. Приказ строжайше предписывал брить тех и только тех, кто не бреется сам. За невыполнение — смертная казнь. Солдат исправно нёс нехитрую службу парикмахера ровно один день. На следующее утро, проведя ладонью по подбородку, он взялся за лезвие и кисточку, чтобы придать своим щекам былой глянец, но… вовремя спохватился. Начни он скоблить собственную щетину, быть ему в числе тех, кто бреется сам. И тогда он в соответствии с грозным распоряжением начальства не должен себя брить. Если же он откажется себя брить, то станет одним из тех, кто сам не бреется и кого как раз он-то и обязан брить! Как же поступить бедняге брадобрею?!

Разумеется, перед нами шутливое иносказание настоящего парадокса. На самом деле формулировка его более строга.

Существуют множества, которые могут содержать сами себя в качестве элемента. Назовём их необыкновенными. Вчитайтесь, к примеру, в такое определение: «Множество А включает в себя все множества, которые можно определить предложением, содержащим меньше двадцати слов». Только что приведённая фраза содержит всего 15 слов. Значит, само множество А тоже является элементом множества А! Разумеется, перед нами курьёзное исключение. Большинство совокупностей обыкновении — не содержат себя в качестве элемента. Давайте пока ограничимся только такими пай-множествами, которые вроде бы не сулят никакого подвоха. И рассмотрим множество всех обыкновенных множеств. Обозначим его буквой М. Предлагается ответить: само М — обыкновенное или необыкновенное? Бесспорно, оно должно быть либо тем, либо другим — третьего не дано. Допустим, что М — обыкновенное множество. Тогда оно должно содержать себя в качестве, элемента: ведь М, по определению, множество всех до единого обыкновенных множеств. — Но если оно включает самое себя, значит, перед нами необыкновенное множество! Ладно, пусть будет таковым. Стоп… Что же получилось: необыкновенное М входит в множество всех обыкновенных множеств? Но ведь мы же договорились вообще не иметь дела с необыкновенными множествами! М, по определению, не имеет права входить в множество всех и одних только обыкновенных множеств! А уж если оно угодило туда, пусть изволит стать обыкновенным. Остаётся одно: объявить множество М обыкновенным и… начать сызнова «сказку про белого бычка». Как видно, в отличие от своего севильского коллеги из бессмертной трилогии Бомарше Фигаро лорда Рассела занялся интригами на более высоком уровне — в области логики и математики.

Парадоксы теории множеств заставили математику ревизовать свои логические устои.

Как известно, ахиллесовой пятой канторовской теории множеств был её неконструктивный характер. Кантору ставили в упрёк, что он прибегал к доказательству от противного. Он обосновывал истинность фундаментальнейших выводов своей теории не прямо, а косвенно — демонстрируя абсурдность противоположного утверждения. До поры до времени это казалось убедительным. В самом деле, если одно из двух взаимоисключающих предложений ложно, то другое обязательно должно быть истинным. По крайней мере так гласил закон исключённого третьего. Приём редукцио ад абсурдум (приведение к нелепости) широко практиковался в математике со времён Евклида. Но ведь у Рассела в его парадоксе с брадобреем та же логическая процедура, проверенная тысячелетиями, дала осечку! Так почему же, спрашивается, она не могла подвести и Кантора? Неужто и впрямь… «движенья нет»? Во всяком случае, в логике опровергателей Зенона, апеллировавших к построениям Кантора…

Но, быть может, противоречия были порождены чересчур вольной трактовкой понятия «множество»? А если более строго сформулировать требования к смыслу каждого термина, к каждой логической процедуре? И даже попытаться, если удастся, построить «конструктивную» логику, где не будет закона исключённого третьего и доказательств от противного?

Теорема Гёделя легла в основу целого направления в математике и логике. Сама математическая теория, непротиворечивость которой пытаются обосновать, стала предметом изучения особой «надматематической» науки, названной метаматематикой, или теорией доказательств. Какова природа истины? На каких посылках зиждется сам фундамент математики? Какой смысл имеют математические предложения: аксиомы, леммы, теоремы? Какую логическую структуру должны иметь доказательства? Так попытки разрешить парадоксы столкнулись с более широкой проблемой обоснования математики и логики.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "По следам сенсаций"

Книги похожие на "По следам сенсаций" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Лев Бобров

Лев Бобров - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Лев Бобров - По следам сенсаций"

Отзывы читателей о книге "По следам сенсаций", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.