Авторские права

А. Степанов - Число и культура

Здесь можно купить и скачать "А. Степанов - Число и культура" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
А. Степанов - Число и культура
Рейтинг:
Название:
Число и культура
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Число и культура"

Описание и краткое содержание "Число и культура" читать бесплатно онлайн.



[ В 2002 г. на издание этой книги был получен грант Российского фонда фундаментальных исследований (РФФИ, проект 02-06-87085), и в 2004 она вышла в издательстве "Языки славянской культуры", Москва (в отредактированном виде, т.е. несколько отличном от варианта на сайте). ]






С середины ХIХ и особенно с начала ХХ в. наблюдается настоящий взрыв интереса к дискретным структурам. Историки науки свидетельствуют о возрождении древней ("демокритовской") атомистики в трудах Максвелла и Больцмана 1850 – 70-х гг.; в конце ХIХ – начале ХХ вв. молекулярно-кинетическая теория обретает полноправное гражданство в науке. В 1856 – 63 гг. австрийский монах Грегор Мендель формулирует алгебраические законы биологической наследственности, в 1900 г. М.Г. де Фриз, К.Э.Корренс, Э.Чермак-Зейзенегг их переоткрывают, а школа Т.Моргана выясняет их цитологические механизмы. Клеточные и хромосомные теории занимают центральное место в новой биологии. В 1854 г. выходит работа английского математика и логика Джорджа Буля "Исследование законов мышления", в которой последнее предстает в дискретной, алгебраической форме; шотландец Огастес Морган независимо приходит к аналогичным идеям. В периодическом законе Д.И.Менделеева (1869) порядковый номер химического элемента определяет набор его свойств. Излишне, по-видимому, напоминать об открытии квантов света Планком, Эйнштейном, поскольку о квантовой механике, о теории элементарных частиц (и значит, косвенно о номерах энергетических уровней и подуровней) речь уже шла. Один из основателей топологии, А.Пуанкаре, активно обсуждает вопрос о простейших фундаментальных структурах в геометрии, в физике, в частности о размерности физического пространства, о его роде.

Отзываясь на новейшие веяния, П.А.Флоренский пишет статью "Пифагоровы числа", начинающуюся словами: "С началом текущего века научное миропонимание претерпело сдвиг, равного которому не найти, кажется, на всем протяжении человеческой мысли; даже скачок от Средневековья к Возрождению теряет в своей значительности, будучи сопоставлен с мыслительной стремниной нашего времени. Слово революция кажется слабым, чтобы охарактеризовать это событие культуры: мы не знаем, еще не знаем как назвать его. Увлекаемые вырвавшимся вихрем, мы не имеем и способов достаточно оценить скорость происходящего процесса, как не выработали еще в себе категорий сознания, которыми можно было бы выразить общий смысл совершающегося" [346, c. 632]. Далее Флоренский называет два главных нерва новых веяний – это внимание к форме (форме целого) и к прерывно-цифровым ("пифагорейским") аспектам строения.(25)

С тех пор отмеченные тенденции только укрепились. Начиная, как минимум, с К.Шеннона, даже информация обретает свою количественную, дискретную меру, современная техника отдает все большее предпочтение цифровым технологиям.

Означенный процесс алгебраизации и/или арифметизации не обошел стороной и науки о языке (лингвистика Ф. де Соссюра, фонология Н.Трубецкого, семиотика), искусстве ("формальная школа" в литературоведении, структурализм), первобытном мифе и обществе (Леви-Брюль, Леви-Строс и др.). Об этом уже упоминалось в разделе 1.1, но сейчас нас интересует более специальный аспект. Однако прежде – еще одно отступление.

Рассматриваемые системы класса S – будь то из предшествующего раздела или из настоящего – хорошо известны науке и носят в топологии наименование симплексов (от лат. simplex – простой). Прообразом двумерных симплексов служит треугольник, трехмерных – тетраэдр (треугольная пирамида):



Рис. 1-14

Для изображения тройственных систем (т.е. двумерных симплексов) ранее уже использовались треугольники, в частности треугольник Фреге (рис. 1-6); та же фигура является одним из иконографических символов Троицы. Треугольник способен служить наглядной схемой и для прочих триад.

В качестве элементов (в принятой терминологии) могут быть выбраны вершины треугольника, в качестве отношений между элементами – его стороны. Каждая из сторон соединяет пару вершин, будучи, таким образом, бинарным отношением ( n = 2 ). Каждая из вершин треугольника соединена соответствующими сторонами с каждой, т.е. система связна. Количества вершин и сторон совпадают: М = k, ср. уравнение (1) из раздела 1.2, – каждое из них равно трем.

С ничуть не меньшим основанием можно назначить элементами стороны треугольника; в таком случае роль отношений сыграли бы пересечения сторон, т.е. вершины. Каждое из пересечений, очевидно, бинарно, по-прежнему n = 2. Система в этом плане логически симметрична, инверсивна.

Подобное разложение треугольника не противоречит холистичности его восприятия. Один из исследователей науки напоминает о платоновской традиции целостного, интуитивного постижения геометрических истин: "Хотя треугольник и сложен из отрезков прямых, его свойства не дедуцируются из свойств прямой как таковой. Интуиция треугольника так же неделима, как неделимы слоги в известном рассуждении Платона из "Теэтета"" [152, c. 29], – и далее, ссылаясь на Платона, Аристотеля, Прокла, отмечает наличие и эстетического аспекта.

Если тройственные структуры ассоциируются с двумерными симплексами, то рассматриваемые в настоящем разделе четверичные – с симплексами трехмерными. Тетраэдр – также замкнутый геометрический объект, в котором каждая тройка его вершин соединена соответствующей гранью, т.е. в системе конституированы тринитарные отношения, n = 3. Аналогично предшествующему примеру, в качестве элементов могут быть выбраны вершины, отношений – грани пирамиды, но с равным успехом и наоборот, поскольку любая из вершин представляет собой пересечение трех и именно трех граней. Система по-прежнему логически инверсивна. Числа вершин и граней в тетраэдре совпадают ( М = k ), каждое из них равно четырем.

Помимо двумерных и трехмерных, топология оперирует симплексами произвольной размерности, n – мерными, где n может быть как больше, так и меньше двух или трех. В n – мерном эвклидовом пространстве симплексом называется замкнутая фигура n измерений, обобщающая понятия треугольника и тетраэдра. Пока мы, впрочем, сосредоточили внимание на тройственных и кватерниорных системах, хотя в нашем распоряжении есть и общее решение для различных n, М – выражения (9), (10), – которым отвечают симплексы произвольных размерностей.

В ХХ в. возник такой эффективный раздел математики как комбинаторная топология (см., напр., [258] или [14]). Геометрические объекты произвольной формы разбиваются на простейшие составляющие, симплексы. И наоборот: из последних, как из деталей конструктора, могут быть собраны фигуры произвольной конфигурации. Т.е. не только системы S, симплексы обладают элементарно-комбинаторной природой, но и используя такие системы как готовые блоки, "кирпичи", из них можно строить всевозможные сочетания. Так называемый симплекс-метод применяется, в частности, в экономике.

С середины ХIХ и особенно в ХХ в. наука, культура проявляют все бóльшую склонность к интеллектуальным операциям подобного сорта, воспроизводя тем самым древний алфавитный принцип: слова состоят из слогов, из букв, комбинируя слова, можно составлять фразы, абзацы, текст в целом. (О коррелятивности алфавитного и числового принципов упоминалось в разделе 1.1.) Многообразие химических веществ изображается в форме соединений химических элементов (записываются формулы, для реакций составляются уравнения). С начала ХХ в. сами эти элементы, атомы представляются в виде сочетаний элементарных частиц (теперь утверждают, что и последние могут быть разложены на кварки). Не отставала и биология – учения, разгадывающие генетический код, открыто говорят о четырехбуквенном алфавите А – Г – Т – Ц (если угодно, еще один образец кватернионов ХХ в.). Сходные "блочные" тенденции присущи и технике, логике, культурологии (структурализм) и даже искусству (например, пуантилизм по отношению к цвету, кубизм по отношению к форме, концептуализм применительно к иделогемам, мифологемам, штампам сознания).

Анализируемые семантико-числовые системы также суть своего рода "блоки", "кирпичи", отформованные индивидуальным и, главное, коллективным сознанием в ходе функционирования культуры. Затем из них составляются более затейливые конструкции. Их особенностью пока является то, что процесс конструирования и строительства осуществляется не столько осмысленно, сколько полу- и бессознательно, "автоматически", как в муравейнике. Сама полу- или бессознательность названных структур способствует восприятию их в качестве готовых "неразложимых" единиц. Существует множество причин, способствующих "затемнению" семантико-числовых систем как в элитарной, так и в массовой культуре, политике, частично они уже обсуждались. Но именно благодаря указанному "затемнению" они действуют хотя и через нас, но независимо от нашей сознательной воли, будучи в такой проекции "объективными". Их назначение – служить априорными предпосылками познавательных моделей, общественной жизни, так сказать, своеобразными образцовыми "матрицами".

Итак, простые холистические системы, с которыми мы имеем и будем иметь дело во всей первой главе, по существу оказались симплексами, элементарными единицами смысла. До сих пор мы не использовали такое название только по одной причине: симплексы – топологические, т.е. континуальные, объекты, и чтобы корректно применять настоящий термин, пришлось бы говорить о семантическом континууме, проверять его строгие математические условия. Это, пожалуй, чересчур. Поэтому, несмотря на то, что современная математика считает геометрическими предметы самой разной природы (например, "точкой" может служить и функция, и множество, и бесконечное пространство), мы не пойдем по ее стопам и в дальнейшем будем использовать понятие "симплекс" в переносном, метафорическом значении. При этом постоянно имея в виду, что речь идет все же о логических, а не о геометрических объектах. Для предпочтения чисто логических, арифметических интерпретаций перед геометрическими существуют и дополнительные причины. Мы рассматриваем генетически "старо-рациональное" (см. Предисловие), а "античность строго различала арифметику и геометрию, традиционно приписывая первой более высокий гносеологический статус" [152, c. 32]. Кроме того, геометрическая наглядность (треугольник, тетраэдр) порой способна оказывать медвежью услугу и уводить процесс понимания по ложному пути. Математика этим не грешит, а менее искушенный читатель может ненароком попасться в ловушку.(26) Итак, потребовалось немало усилий, чтобы ввести в текст всего одно дополнительное слово, зато теперь мы подготовлены к тому, чтобы обратиться к сфере политики – к политическим симплексам.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Число и культура"

Книги похожие на "Число и культура" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора А. Степанов

А. Степанов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "А. Степанов - Число и культура"

Отзывы читателей о книге "Число и культура", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.