» » » » Антон Первушин - Битва за звезды-2. Космическое противостояние (часть II)


Авторские права

Антон Первушин - Битва за звезды-2. Космическое противостояние (часть II)

Здесь можно скачать бесплатно "Антон Первушин - Битва за звезды-2. Космическое противостояние (часть II)" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство ООО «Издательство ACT», год 2004. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Антон Первушин - Битва за звезды-2. Космическое противостояние (часть II)
Рейтинг:
Название:
Битва за звезды-2. Космическое противостояние (часть II)
Издательство:
ООО «Издательство ACT»
Год:
2004
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Битва за звезды-2. Космическое противостояние (часть II)"

Описание и краткое содержание "Битва за звезды-2. Космическое противостояние (часть II)" читать бесплатно онлайн.



Перед вами книга, рассказывающая об одном из главных достижений XX века — космонавтике, которую весь мир считает символом прошлого столетия. Однако космонавтика стала не только областью современнейших исследований науки и достижений техники, но и полем битвы за космос двух мировых сверхдержав — СССР и США. Гонка вооружений, «холодная война» подталкивали ученых противоборствующих систем создавать все новые фантастические проекты, опережающие реальность.

Данный том посвящен истории бурного развития космонавтики во второй половине XX века, альтернативным разработкам и соперничеству между Советским Союзом и США.

Книга будет интересна как специалистам, так и любителям истории.






Но даже для фотонной ракеты подобный перелет связан с колоссальной затратой «рабочего вещества». Так, для полета продолжительностью 30–40 лет в фотонном двигателе придется «сжечь» в световую энергию примерно 10 миллиардов тонн вещества! Выделившейся при этом энергии хватило бы для расплавления оболочки земного шара на глубину в сотни километров. Не удивительно, что иногда предлагают, чтобы фотонный звездолет, отправляясь в свой далекий путь, захватывал с собой в качестве «топлива» какой-нибудь астероид.

Но так ли уж обязательно захватывать с собой все запасы фотонного «топлива»? Неужели нельзя заправляться в полете? Отвечая на этот вопрос, мы вплотную подходим к вопросу «внешних ресурсов».

К вопросу о внешних ресурсах

К «внешним», то есть не запасаемым на борту летательного аппарата, ресурсам можно отнести электростатическое и магнитное поля Земли, различные виды энергии атмосферы (механическую, тепловую, химическую), энергию солнечного излучения, а также термоядерную энергию, сосредоточенную в космическом водороде.

Всю эту энергию вполне возможно извлечь, преобразовать и использовать для перемещения космических аппаратов.

Ближайшим к нам «внешним ресурсом», который может быть использован как источник дешевой (практически дармовой) энергии, является атмосфера.

И по сегодняшний день конструкторы космической техники воспринимают атмосферу как личного врага, накладывающего своим аэродинамическим сопротивлением известные ограничения. И в то же время путь, который позволит сделать из врага союзника, хорошо известен. Это — замена первой стартовой ступени на аэростатическую или авиационную систему.

Собственно, обсуждению преимуществ таких систем перед традиционными и посвящена настоящая книга, и в предыдущих главах я уже показывал, сколько выгод дает их применение, однако развитие космических технологий идет пока в другом направлении, и способы использования внешнего ресурса атмосферы должны опираться на существующий задел.

Например, предлагается устанавливать на первых ступенях ракет-носителей воздушно-реактивные двигатели — турбореактивные и прямоточные. Наиболее пригодны для подобного использования прямоточные двигатели с так называемым сверхзвуковым сгоранием (в этих двигателях топливо сгорает в воздушном потоке, движущемся со сверхзвуковой скоростью, что позволяет резко уменьшить размеры и вес двигателя по сравнению с обычными прямоточными двигателями, внутри которых воздушный поток до сгорания затормаживается до дозвуковой скорости) и различные гиперзвуковые прямоточные двигатели. Помимо выигрыша в величине удельного импульса, применение совершенных прямоточных двигателей может привести также к значительному уменьшению веса ракеты. Особенно выгодно применение прямоточных двигателей на возвращаемых с целью повторного использования ступенях ракетыносителя.

По одному из подобных проектов в США предполагалось создать ступень тяжелой космической ракеты «Арктур», снабженную турбопрямоточными двигателями и весящую около 550 тонн. Эта ступень должна разгонять ракету общим весом около 1650 тонн до скорости 1200 м/с. По расчетам, ракета сможет обеспечить плавную посадку на Луну груза весом до 27 тонн.

Разрабатываются проекты установки на подобных ступенях и ракетно-прямоточных двигателей, в которых обогащенные горючим продукты сгорания ракетного двигателя будут вытекать в прямоточный двигатель, где произойдет дожигание газов с использованием атмосферного кислорода.

Для облегчения засасывания атмосферного воздуха в этот двигатель предполагается установить на ракете специальное устройство — эжектор, в котором используется подсасывающее действие высокоскоростной реактивной струи, вытекающей из ракетного двигателя. Подсасывание воздуха в реактивную струю может привести к увеличению удельного импульса даже при отсутствии сгорания за ракетным двигателем и только за счет увеличения тяги из-за роста массы газов в реактивной струе.

Использование атмосферного кислорода представляется некоторым авторам и иначе. По их мнению, с помощью специального летательного аппарата с воздушно-реактивными двигателями, совершающего длительные полеты у границ плотной атмосферы (то есть на высотах порядка 80-110 километров), можно осуществить конденсацию и накопление кислорода из атмосферы. Эта возможность связана с тем, что, как показывает расчет, мощность двигателей на таких высотах оказывается достаточной и для преодоления лобового сопротивления аппарата, и для осуществления процесса сжижения кислорода. Считается, что после накопления кислорода в количестве, равном весу летательного аппарата, может быть осуществлена дальнейшая фаза космического полета с помощью жидкостного ракетного двигателя, работающего на жидком водороде. Может быть организована и передача жидкого кислорода другим космическим ракетам путем заправки в полете.

Еще более радикальным является другое предложение об использовании ресурса верхних слоев земной атмосферы как практически неисчерпаемой кладовой активных химических веществ, которые могут служить превосходным ракетным топливом. Эти вещества образуются в результате взаимодействия атмосферы с коротковолновым излучением Солнца, являясь продуктами фотохимических реакций, идущих под действием этого излучения. Как было подтверждено с помощью ракетных исследований ионосферы, на высотах более 80-100 километров молекулы кислорода, а затем и азота, распадаются на составляющие их атомы. Такой распад, требующий затраты значительных количеств тепла, идет под действием жесткого коротковолнового излучения Солнца.

Образующиеся таким образом за счет аккумулирования солнечной энергии атомарные газы, кислород и азот, весьма активны химически и стремятся снова к слиянию в молекулы с выделением затраченной на диссоциацию энергии. Произведенные расчеты показывают, что количество запасенной таким образом в атмосфере химической энергии превосходит энергию всех известных запасов химического топлива на Земле.

В 1956 году в США были предприняты первые попытки экспериментального доказательства возможности ускорения процесса рекомбинации атомарных газов атмосферы. Для этого с геофизической ракеты «Аэроби», запущенной в ионосферу, на высоте около 90 километров было выброшено примерно 9 килограммов вещества, являющегося катализатором, ускоряющим реакцию рекомбинации атомарного кислорода. Немедленно вслед за этим в ночном небе образовалось быстрорастущее и яркое зеленовато-белое облако — начался бурный процесс рекомбинации.

Неудивительно возникновение мысли о возможности осуществления подобного каталитического процесса рекомбинации внутри двигателя ракеты, с тем чтобы использовать выделяющуюся при этом энергию для создания движущей реактивной струи. Подобные предложения неоднократно высказывались как у нас в стране, так и за рубежом. Такие гипотетические двигатели называются «хемосферными» (поскольку зону ионосферы с максимальной интенсивностью процесса диссоциации газов называют хемосферой), или «ионосферными».

Принципиальное устройство ионосферного двигателя весьма просто. Он напоминает собой обычный сверхзвуковой прямоточный воздушно-реактивный двигатель — спереди через воздухозаборное отверстие в двигатель поступает атмосферный воздух с высокой концентрацией атомарных газов, сзади через сопло вытекает раскаленная струя рекомбинировавших молекул кислорода и азота. Место камеры сгорания этого двигателя, работающего без какого бы то ни было топлива, занимает рабочая камера рекомбинации, в которой помещен катализатор. В печати указывается, что одним из наилучших возможных катализаторов является золото — тонким слоем оно может покрывать стенки камеры и перегораживающую ее решетку. Впрочем, катализатор может оказаться и вовсе не нужным, так как в результате сжатия набегающего потока во входном воздухозаборнике двигателя температура и давление в нем повысятся настолько, что рекомбинация пойдет сама по себе.

Однако, несмотря на внешнюю заманчивость этой идеи «бесплатного» энергопитания силовой установки летательного аппарата, практическая ее реализация весьма сомнительна.

Действительно, при полете с очень большими, например орбитальными, скоростями такой двигатель будет обладать чрезмерно большим лобовым сопротивлением, в несколько раз превосходящим развиваемую им полезную тягу. Чтобы тяга превосходила сопротивление, скорость полета должна быть относительно небольшой, примерно в 2–4 раза больше скорости звука, но тогда возникают трудности, связанные с созданием необходимой подъемной силы, то есть удержанием летательного аппарата на данной высоте.

Другой внешний ресурс атмосферы — это электрический заряд. Известно, что в самых верхних слоях частицы воздуха ионизованы, они уже не нейтральны, как у Земли. Это наводит на мысль о том, что при полете в ионосфере можно использовать ионизованные частицы в качестве рабочего вещества электроракетных двигателей. Точнее говоря, это будут уже не электроракетные, а своеобразные электропрямоточные или ионно-прямоточные двигатели. В них будут засасываться из ионосферы заряженные частицы, точно так же как в тяговую камеру ионного ракетного двигателя поступают ионы цезия из ионного источника. Затем эти частицы будут обычным для ионных двигателей способом ускоряться и вытекать позади, создавая реактивную тягу.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Битва за звезды-2. Космическое противостояние (часть II)"

Книги похожие на "Битва за звезды-2. Космическое противостояние (часть II)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Антон Первушин

Антон Первушин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Антон Первушин - Битва за звезды-2. Космическое противостояние (часть II)"

Отзывы читателей о книге "Битва за звезды-2. Космическое противостояние (часть II)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.