» » » » Компьютерра - Журнал «Компьютерра» № 33 от 11 сентября 2007 года


Авторские права

Компьютерра - Журнал «Компьютерра» № 33 от 11 сентября 2007 года

Здесь можно скачать бесплатно " Компьютерра - Журнал «Компьютерра» № 33 от 11 сентября 2007 года" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая околокомпьтерная литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
 Компьютерра - Журнал «Компьютерра» № 33 от 11 сентября 2007 года
Рейтинг:
Название:
Журнал «Компьютерра» № 33 от 11 сентября 2007 года
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Журнал «Компьютерра» № 33 от 11 сентября 2007 года"

Описание и краткое содержание "Журнал «Компьютерра» № 33 от 11 сентября 2007 года" читать бесплатно онлайн.








Однако с точки зрения чистой математики в пределе остается отнюдь не пустота. Предельное канторово множество – трудновообразимый континуум (то есть нечто эквивалентное исходному отрезку!), все связи между точками которого разорваны выбрасыванием бесчисленных крошечных отрезков.

С использованием разложения по гросс-единицам Сергеев описывает этот процесс (и его результат) иначе. На n-м шаге процесса имеется 2n отрезков, каждый длиной 3-n. Стало быть, после

шагов бесконечно большое количество отрезков будет равно (2

), а их общая длина выразится бесконечно малым числом ((2/3)

). Эти выражения – точная характеристика фрактального множества, которая изменится при других параметрах порождающего процесса (если топить больше, или меньше, да еще и в других местах). Разумеется, аналогичные характеристики есть и в классике – например, фрактальная размерность, которая в данном случае равна log(2)/log(3). Но в классике лишен, конечно, смысла вопрос, насколько отличаются результаты последней и предпоследней из некоторого бесконечного числа итераций. Через новые числа это легко выразить: так, на шаге

– 1 общая длина отрезков равна (2/3) (

– 1).

Однако в новой системе невозможно пересчитать все полученные отрезки: ведь их будет (2

), то есть строго больше, чем

А мы помним постулат, что любой процесс, в том числе и процесс последовательного счета, не может использовать более

шагов. Зато здесь можно точно подсчитать число точек (!) в множестве, полученном после бесконечного числа шагов. Дело в том, что само понятие точки теперь сильно отличается от классического. "Как только мы выбрали символы для записи чисел, выражающих координаты точек, – поясняет Ярослав Сергеев, – мы определили понятие «точка» и можем легко сосчитать число этих точек. Более мощная система записи (например, система (1)) позволит нам увидеть больше точек, а более слабая (традиционная) – меньше".

Обратимся, наконец, к давно обещанным мерцающим фракталам. Мерцание заключается в том, что фрактальный процесс генерирует не одно, а несколько множеств. В данном случае их два, а процесс задан схемой:

Начав с синего квадрата, получаем на последовательных шагах такую динамику двух зависимых друг от друга множеств (см. схему внизу).

На четных шагах мы видим фигуру из синих квадратов, на нечетных – другую, составленную из красных треугольников. Описание динамики этого процесса в новой арифметике состоит в подсчете площади каждой фигуры на любом из шагов в процессе ее построения. Например, возьмем шаг

/2 – это четное бесконечное число, поэтому фигура в этот момент состоит из 2(3

/4) синих квадратов с общей бесконечно малой площадью 2(-

/4). На следующем шаге номер (

/2)+1 площадь фигуры из красных треугольников будет равна 2-

/4+1, и т. д. Вот так бесконечные числа описывают динамику этого мерцающего процесса – казалось бы, не имеющего предела в классическом смысле, подобно ряду 1, -1, 1, -1, …, 1. [Впрочем, аналогия тут не совсем полная.]

В заключение – скриншот "калькулятора бесконечности", построенного на основе уже работающего софтверного симулятора "компьютера бесконечности". Может быть, когда-нибудь мы увидим "компьютер бесконечности", реализованный в железе. Но это зависит от того, станет ли новая арифметика бесконечных чисел незаменимым инструментом решения сложных задач.

Ну а совсем в заключение – просим не рассматривать эту публикацию как сигнал о нашей особой заинтересованности в сочинениях именно на такие, фундаментальные и в то же время экзотические темы. Впрочем, независимо от тематики, мы пишем только о том, что прошло апробацию в солидной научной периодике, на серьезных конференциях и семинарах. Увлекательная работа Ярослава Сергеева именно такова.

Cправка

Ярослав Серегеев занимает должность "полного профессора", учрежденную в Университете Калабрии (Италия) для приглашения выдающихся ученых. Он также профессор Нижегородского государственного университета им. Н. И. Лобачевского, доктор физико-математических наук, специалист по численному анализу, параллельным вычислениям, глобальной оптимизации, автор более 150 научных публикаций, среди которых 50 статей в международных журналах и три книги. Сергеев – один из организаторов и координатор Российско-Итальянского университета, действующего при Нижегородском университете.

Арифметике бесконечностей посвящен ряд его недавних работ, в том числе статья "Blinking fractals and their quantitative analysis" (Chaos, Solitons & Fractals, 33(1), 50—75, 2007), использованная в этом материале. См. также www.info.deis.unical.it/~yaro/arithmetic.html, www.grossone.com.

Добротная бесконечность против QWERT

Автор: Анатолий Кричевец

Как полагает Леонид Левкович, ответ на вопрос об эффективности предложенной Ярославом Сергеевым принципиально новой числовой системы даст история. Разумеется, история всех нас рассудит, но обязаны ли мы с нею соглашаться?

Идеи Сергеева кажутся мне по научным меркам вполне добротными, интересными и уже неплохо проработанными, но реакция сообщества на них, увы, довольно слабая (пока?). О чем это говорит?

Сеймур Пейперт, известный в компьютерном мире прошлого века прежде всего как создатель "черепашьей графики", назвал некоторые суждения истории феноменом «QWERT» – по буквам первого ряда на латинской клавиатуре пишущей машинки. Никто не может проверить, является ли такое «разложение» букв по клавишам в каком-либо смысле оптимальным. Эту проверку можно было бы устроить только в рамках альтернативной истории, где другая система была бы столь же привычной, как наша «QWERT», и столь же обеспеченной с детства доступными предметами окружающей среды. Тогда, если бы мы сравнили скорость, количество ошибок и тому подобные показатели уравненных по важным качествам групп из культур «QWERT» и, скажем, «TREWQ», в нашем лице история сделала бы (возможно, впервые) обоснованное суждение. В настоящей же ситуации история только зафиксировала необратимый культурный выбор, один из тысяч подобных [С. Пейперт известен также написанной в соавторстве с М. Минским книгой «Перцептроны» (М.:, Мир, 1971), в которой был подвергнут разгрому нейросетевой (в современных терминах) подход к моделированию человеческого восприятия].

Другой пример. Никто не скажет, что английский язык является наилучшим языком для выражения мысли. Известный в лингвистике тезис Сепира-Уорфа утверждает, что «объективный» мир, с которым имеет дело человек, в значительной степени определяется особенностями языка, на котором человек говорит и с помощью которого мыслит. Психологи недавно провели эксперимент, показавший, что одну и ту же последовательность сцен (скажем, мультфильм) люди, говорящие на немецком и на английском языках, описывают по-разному: англичане выделяют в несколько раз больше эпизодов и описывают их как текущие действия (часто употребляя очень удобный для этого английский герундий), носители немецкого языка выделяют эпизоды более длинные и приводящие к какому-то результату [Величковский Б.М., Когнитивная наука. В 2-х. т. – М.:, Смысл, 2006] (вспомним, что существительные в немецком языке пишутся с заглавной буквы). Выбирая в качестве языка международного общения английский, мы предрешаем кое-что в содержании наших знаний, по-видимому, утрачивая какие-то возможности, доступные при ином выборе. Но нынче разумно учить английский – поскольку он наиболее употребителен. Вот и Сергеев пишет по-английски, а не на языке итальянских прачек, на котором писал Галилей.

Читая в его статье о том, что количество четных чисел вдвое меньше, чем всех натуральных, я испытываю чувство, обратное тому, которое испытал на первом курсе мехмата, когда лектор с непринужденным видом, но все же явно рассчитывая на эффект, сообщил, что четных чисел столько же, сколько натуральных. Я понял, что он глубоко прав и что придется с ним согласиться и думать, как он. Но бывший школьник во мне сделал заметочку в дальнем углу памяти, что этой правде где-то должна быть не менее глубокая альтернатива. Теперь она явилась – и признаюсь, я испытываю некоторое облегчение.

Однако теперь я понимаю, что результаты, полученные в рамках канторовского подхода, не являются утверждениями об объективном мире и поэтому не могут быть ложными. Канторовский способ видеть мир порождает массу интересных вопросов и целую культуру рассуждений о них. Очень сомнительно, чтобы подход Сергеева помог решить какие-то из этих вопросов.

С другой стороны, в практике применяется, конечно, не теорема Банаха-Тарского, позволяющая легко удваивать футбольные мячи. Просто воспроизводство инженеров и других "практических реализаторов" математической мысли в настоящее время связано традиционной цепочкой с воспроизводством «канторовских» математиков. Эта связь – феномен «QWERT». По моему собственному мнению, матанализ для практиков надо рассказывать без теоретико-множественных тонкостей, примерно на уровне второй половины XVIII века [Кричевец А.Н., Дьячков А.Г., Шикин Е.В., Математика для психологов. – М.:, Флинта, 2006], но и бесконечность по Сергееву здесь вряд ли понадобится.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Журнал «Компьютерра» № 33 от 11 сентября 2007 года"

Книги похожие на "Журнал «Компьютерра» № 33 от 11 сентября 2007 года" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Компьютерра

Компьютерра - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " Компьютерра - Журнал «Компьютерра» № 33 от 11 сентября 2007 года"

Отзывы читателей о книге "Журнал «Компьютерра» № 33 от 11 сентября 2007 года", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.