Владимир Левшин - Путевые заметки рассеянного магистра
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Путевые заметки рассеянного магистра"
Описание и краткое содержание "Путевые заметки рассеянного магистра" читать бесплатно онлайн.
Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.
Для младшего школьного возраста.
Владимир Левшин
Путевые заметки рассеянного магистра
Первая весточка
Вещий Олег! Он действительно не ошибся. Прошло около двух месяцев, не более, и Клуб Рассеянного Магистра в полном составе снова двинулся по следам приключений и ошибок неутомимого путешественника.
Первая весточка пришла как раз к началу учебного года. Это была поздравительная радиограмма с весьма широковещательным обращением:
«Всем, всем, всем! Учителям и учительницам! Школьникам и школьницам! Поздравляю вас с началом минувшего учебного года. Пусть он будет таким же успешным и весёлым, как год наступивший.
Сейчас мы с Единичкой очень далеко от вас — не менее чем в тридцати тысячах километров. Здесь круглый год лето. Мы сидим под пальмой, то и дело протягивая руку, чтобы сорвать с дерева банан или кокосовый орех. Единичка сожалеет, что не попадёт в свою школу к началу учебного года. Но… нет худа без добра. Ведь с Единичкой занимаюсь я сам!
Она очень прилежная ученица, и я не скуплюсь на хорошие отметки. Пятёрок у неё вдвое больше, чем четвёрок, четвёрок на две больше, чем троек. А вот троек у Единички в пять раз меньше, чем двоек. Да-да, троек в пять раз меньше, чем двоек! Правда, двоек у неё нет совсем. Надеюсь, теперь вы разберётесь сами, какие отметки у Единички.
Способная девочка! И всё-таки ей далеко до меня. О, я был исключительно талантливый ребёнок! Вот, например, учительница спросит: что больше — корень квадратный из двух или корень кубический из трех? И я тотчас же соображу, что корень квадратный из двух больше, чем кубический из трех.
А ещё помню, в младшем классе мы проходили переместительный закон, где говорится, что от перемены мест слагаемых сумма не меняется. Я тогда подумал: нельзя ли использовать этот закон не только при сложении чисел, а более широко? У меня вообще, как вы знаете, философский склад ума. И я пришёл к выводу, что можно! Вот, например, есть такое правило: когда тебе задали задачу, сперва подумай, а потом решай. Признаться, правило это мне порядком надоело, и я решил применить к нему переместительный закон: стал сперва решать, а потом уж думать! Правда, ответы от этого несколько менялись, зато отметки оставались те же.
Заметьте, при этом я никогда не пользовался ни подсказками, ни шпаргалками. И вот почему. Однажды сосед мой по парте перед письменной работой заготовил шпаргалку, сунул её в рукав и как ни в чём не бывало уселся на место. Только он собрался ею воспользоваться, учительница хвать! — и вытащила шпаргалку из рукава. Бедняга сосед испугался, стал просить прощения: «Никогда, говорит, больше не буду пользоваться шпаргалками!» А учительница отвечает: «Отчего же? Пользуйся на здоровье. Только умеючи! А то ведь и осрамиться недолго!» Но, представьте себе, сколько мы потом в классе ни практиковались, сколько ни изощрялись, чтобы незаметно было, учительница все равно каждый раз находила шпаргалку. «Эх, вы, — качала она головой, — шпаргалку спрятать толком не умеете!» Тогда-то я понял, что учительницу не проведёшь. Тут нужно быть профессиональным фокусником. Ну, а уж раз ты стал фокусником, так какой тебе смысл идти в школу? Ступай прямо в цирк!
К сожалению, мне приходится закругляться. На телеграфе сказали, что в моей радиограмме 1000 слов, а это очень много и надо сократить её наполовину. А я сказал, что согласен сократить только на одну четверть. Там — ни в какую. В общем, столковались на середине. Так что, сколько слов в моей радиограмме, вы и сами сообразите.
А пока до свидания, вернее, до следующего сообщения, которое не замедлю отправить при первой же возможности. Я ведь дал слово посылать подробные отчёты о своих приключениях, а слово Магистра чего-нибудь да стоит! Спросите об этом у Единички, которая вместе со мной шлёт вам самый горячий привет».
ДЕСЯТОЕ ЗАСЕДАНИЕ КРМ
возникло стихийно, тотчас же после чтения радиограммы, которое состоялось у меня на квартире первого сентября, в семь часов вечера. Почему так поздно? Об этом лучше бы спросить Нулика.
Бессменный президент КРМ стал теперь самой популярной личностью в Карликании. Без него не обходится ни одно сколько-нибудь интересное мероприятие, а интересных мероприятий в Арифметическом государстве — ого-го! — хватает. Сами знаете. Не удивительно, что Нулик находится в состоянии перманентного цейтнота, или, говоря на более понятном языке, непрерывно зашивается. По этому случаю ему даже подарили персональную мини-ракету. Не настолько, впрочем, мини, чтобы в ней не осталось места для Пончика.
Итак, первого сентября, ровно в девятнадцать ноль-ноль персональная мини-ракета «НП» приземлилась, точнее, прибалконилась на моём персональном мини-балконе. Путешественники вошли в комнату с последним ударом стенных часов — совершенно как граф Монте-Кристо (кто в данном случае Монте, кто Кристо, разбирайтесь сами), и после взаимных приветствий чтение началось. А так как оно продолжалось недолго, всего несколько минут, решено было не откладывать разбора в долгий ящик. Тем более, что, по мнению президента, ошибки Магистра с первых же слов прямо бросаются в глаза.
— Так-таки и бросаются! — Сева шутливо прикрыл глаза ладонью, защищая их от воображаемых ошибок.
— Нечего насмешничать! — вспылил президент. — Это я выражаюсь фигурально.
— Не лучше ли конкретно? — улыбнулся Олег.
— Ты хочешь сказать — конкректно, — важно поправил Нулик. — Пожалуйста, можно и конкректно. Вместо того чтобы поздравить всех с наступившим учебным годом, Магистр поздравляет с началом минувшего.
— Правильно! — подтвердила Таня. — А что тебе бросилось в глаза дальше?
— Дальше?
— Вот именно: дальше. Да не на потолке, а в радиограмме…
Президент смущённо потупился.
— Ладно уж! — сжалился Олег. — Дальше следовало бы сказать, что Магистр никак не мог находиться в 30 тысячах километров от нас. Ведь расстояние между самыми отдалёнными точками земного шара не более 20 тысяч километров. Даже если передвигаться по экватору. Президент завистливо вздохнул:
— До чего ты умный, Олег! Всегда скажешь что-нибудь новенькое.
Все так и покатились со смеху. Даже Пончик! Авторитет президента основательно покачнулся, но Нулик вовремя поддержал его задачкой о Единичкиных отметках. Он рассуждал так: пятёрок у Единички было вдвое больше, чем четвёрок; четвёрок на две больше, чем троек; троек же в пять раз больше, чем двоек, а вот двоек не было совсем. Стало быть, двоек было нуль, а троек в пять раз больше, то есть опять же нуль. Если четвёрок на две больше нуля, значит, их было две, а пятёрок вдвое больше, чем четвёрок, то есть четыре.
— Ловкач! — поддразнил Нулика Сева. — Всегда отыграешься на чем-нибудь полегче. Сказал бы лучше, что больше: корень кубический из трех или корень квадратный из двух?
— Конечно, корень кубический из трех! — выпалил Нулик не задумываясь.
— Допустим, — вмешался я. — Но почему?
— Хотя бы потому, что Магистр утверждает обратное.
Сева возмущённо фыркнул:
— Ну не ловкач ли?
Олег посмотрел на него укоризненно:
— Ну да, Нулик не знает. Я тоже не знаю. Может быть, знаешь ты?
— Чего нет, того нет!
В конце концов пришлось объяснять мне.
— Разумеется, корень кубический из трех больше, чем корень квадратный из двух, — сказал я. — Но, уж конечно, не потому, что Магистр утверждает обратное, а вот почему. Корень квадратный из двух — это все равно что корень шестой степени из восьми. Как так? — спросите вы. Очень просто: умножим показатель корня (2) и показатель степени подкоренного числа (1) на одно и то же число (3), получим корень шестой степени из восьми, и выражение от этого нисколько не изменится. Следовательно, корень квадратный из двух равен корню шестой степени из восьми (восемь — это и есть два в кубе). Точно так же поступим с корнем кубическим из трех, только умножим его показатели не на три, а на два. И вместо корня кубического из трех получим равное ему выражение — корень шестой степени из девяти, то есть из трех в квадрате. А корень шестой степени из девяти, уж конечно, больше, чем корень шестой степени из восьми.
Сева смущённо потёр переносицу.
— Вот это доказательство! Я бы нипочём не додумался.
— Только ли до этого? — усмехнулась Таня. — Тебе небось и количества слов в радиограмме Магистра тоже не сосчитать!
— А вот и сосчитать! — загремел Сева.
— Докажи! — подначивала Таня.
— И докажу. Сначала в радиограмме была тысяча слов. Магистру предложили сократить её наполовину, а он согласился сократить на четверть. Столковались на середине. А среднее между половиной и четвертью — три восьмых.
— Это как? — строго спросил президент.
— Очень просто: половина плюс одна четверть — это три четверти, а три четверти, делённые на два, равны трём восьмым. Три восьмых от тысячи — это 375. Вот и выходит, что в радиограмме осталось 625 слов. Потому что 1000 минус 375 равно 625.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Путевые заметки рассеянного магистра"
Книги похожие на "Путевые заметки рассеянного магистра" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Владимир Левшин - Путевые заметки рассеянного магистра"
Отзывы читателей о книге "Путевые заметки рассеянного магистра", комментарии и мнения людей о произведении.