» » » » Журнал Компьютерра - Журнал «Компьютерра» №41 от 08 ноября 2005 года


Авторские права

Журнал Компьютерра - Журнал «Компьютерра» №41 от 08 ноября 2005 года

Здесь можно скачать бесплатно "Журнал Компьютерра - Журнал «Компьютерра» №41 от 08 ноября 2005 года" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая околокомпьтерная литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Журнал Компьютерра - Журнал «Компьютерра» №41 от 08 ноября 2005 года
Рейтинг:
Название:
Журнал «Компьютерра» №41 от 08 ноября 2005 года
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Журнал «Компьютерра» №41 от 08 ноября 2005 года"

Описание и краткое содержание "Журнал «Компьютерра» №41 от 08 ноября 2005 года" читать бесплатно онлайн.








Что вообще такое «разрядность процессора»? Как ни странно, это отнюдь не максимальный размер обрабатываемых данных. Складывать и вычитать 64-битные числа x86-процессоры умеют еще со времен Intel Pentium MMX; более того - даже i486 мог работать не только с 64-битными, но и с 80-битными числами, записанными в формате длинной двойной точности с плавающей запятой (long double). И если уж проводить аналогию дальше, то обрабатываемые инструкциями SSE-наборов операнды (регистры XMM) вообще имеют длину 128 бит. Но поддержка инструкций MMX, x87 и SSE 1/2/3 отнюдь не делает процессор 64-, 80- или 128-битным. Грубо говоря, по возможностям вычислений 64-битный процессор теоретически почти ничем не отличается от 32-битного, но достаточно продвинутого собрата[На самом деле, 32-разрядные процессоры, например, не умеют перемножать целочисленные 64-битные числа и делить 128-битные целые числа на 64-битное число, но это уже детали]. Да, работать с ним не так удобно, но при желании можно. В любом случае, соответствующие данные (long long integer или __int64, в общепринятой терминологии языка C) в программах встречаются нечасто.


Так в чем же дело?

А в том, что и x87, и SSE - расширенные наборы инструкций, работающие со специализированными регистрами процессора. Они никак не затрагивают сердце процессора - его базовый набор инструкций (Instruction Set Architecture, ISA) и базовые регистры общего назначения (General Purpose Registers, GPR), равно как и некоторые «представления» процессора об окружающем его мире. Лирик, наверное, не упустил бы здесь возможности немного пофилософствовать на тему подобных «неощутимых» с первого взгляда, но очень глубоких по своей сути различий, но я не философ, а математик, и потому просто скажу, что на практике главное отличие GPR-регистров от всех остальных в том, что их можно использовать для адресации оперативной памяти. То есть 64-битный процессор - это не тот, который в принципе может работать с 64-битными числами (хотя это он тоже должен уметь делать, выполняя с 64-битными целыми числами все базовые арифметические операции), а тот, который способен этими числами «нумеровать» ячейки памяти.

Чтобы было понятнее, о чем идет речь, поясняю: стандартная модель записи целочисленных чисел позволяет записать в 32-разрядный GPR-регистр процессора архитектуры IA-32 любое целое число от 0 до 232-1. Оперативная память с точки зрения прикладных приложений представляется здесь в виде эдакой длинной ленты из ячеек определенного размера (1 байт в x86), причем все они «пронумерованы» - ячейка 0, ячейка 1 и так далее, вплоть до ячейки 4.294.967.295. Какие-то ячейки могут «отсутствовать» - в этом случае обращение к ним будет вызывать ошибку, однако потенциальная возможность обратиться к этой ячейке существует всегда. А вот у 32-разрядного процессора возможности обратиться к ячейке 4.294.967.295 нет в принципе - просто потому, что он не сможет «дать ей название».

Что это означает на практике? Только то, что ни одна «классическая» 32-битная программа не может использовать больше 4 Гбайт (232/210*210*210) памяти. Поэтому если вы спросите продавца о преимуществах 64-разрядного процессора, то именно эту сакральную фразу о «поддержке большого объема оперативной памяти» (вместе с вопросом «а оно вам надо?») и услышите. Но все-таки не спешите сводить эту возможность к установке в систему четырех двухгигабайтных планок SDRAM. Все далеко не так просто.


64-разрядность и оперативная память

Первая «особенность», о которой часто забывают, рассматривая 64-разрядные процессоры, - это то, что во всех современных компьютерах программы работают не с физической, а с виртуальной оперативной памятью, то есть программная адресация памяти может не совпадать с действительным расположением этой памяти в компьютере. В нашей модели длинной ленты ячеек мы можем нумеровать их в произвольном порядке (0, 6533, 21, 554, 54223563, 2, …). Это очень удобно в многозадачных операционных системах: по-разному пронумеровав ячейки и раздав их разным приложениям (после чего в памяти образуется каша, когда данные разных программ лежат вперемешку), на логическом уровне мы сохраняем линейность и стройность, поскольку каждая программа работает не с этой кашей, а с виртуальным пространством адресов, в которое попадают данные только этой программы, и расположенные именно так, как программе привычно.

Впрочем, перенумерацией дело не ограничивается, поскольку вместе с номерами указываются всяческие атрибуты - «только для чтения», «только для операционной системы» и пр. Вдобавок для некоторых ячеек можно указать, что они в оперативную память «пока не загружены». Встретив такую пометку, CPU генерирует специальную системную ошибку (Page Fault) и обращается за помощью к операционной системе, которая может, к примеру, загрузить данные для этой ячейки с жесткого диска (техника своппинга). Поэтому всегда следует помнить, что «ограничение 4 Гбайт» в первую очередь относится не к физической, а к виртуальной оперативной памяти, доступной процессу. А вот что стоит за этими четырьмя гигабайтами адресного пространства - скромные ли 128 Мбайт памяти SDRAM или кусочек от пары терабайтов дискового массива - неважно: собственно процессор этот «реальный мир» почти ничем не ограничивает.

Но все же - что дает разрядность? Если процессор поддерживает длинные физические адреса (в архитектуре x86 соответствующий режим называется Physical Address Extension, PAE[Если подробнее, то в PAE используется 52-битная адресация, позволяющая адресовать до четырех петабайт данных]), то мы можем поставить на сервер хоть 64 Гбайт оперативной памяти и выделять ее разным приложениям. Условия вроде «не более двух гигов для чипсета такого-то» - это ограничения именно чипсета, не умеющего обслуживать большой объем памяти, а не 32-разрядной системы. Поэтому в серверных приложениях, когда на одном сервере, как правило, запущено несколько десятков одновременно работающих приложений, пресловутый «барьер в 4 Гбайт» практически не ощущается. Но означает ли это, что сегодня 64-разрядный x86 никому не нужен?

Конечно, нет! 64-разрядность виртуальной памяти в приложениях востребована уже сейчас, просто эти «добавочные биты» используются другими способами.

Во-первых, какую-то часть виртуального адресного пространства может забирать операционная система. К примеру, MS Windows обычно использует для своих нужд старший бит виртуального адреса, ограничивая адресное пространство запущенного в ней приложения 31 битом и 2 Гбайт адресного пространства. А два гигабайта оперативной памяти, согласитесь, куда ближе к реальной жизни, нежели гипотетические четыре; и ситуацию, когда их начнет не хватать, представить гораздо проще. Можно, правда, попытаться использовать специальный режим, когда Windows будет предоставлять процессам не два, а три гига адресного пространства, но работает он, к сожалению, далеко не всегда, зачастую роняя при неправильной настройке операционную систему.

Во-вторых, линейное адресное пространство подвержено «засорению» - процессу, в ходе которого в нем образуются дырки, которые невозможно использовать. Программы часто оперируют не байтами и словами, а гораздо более крупными структурами, занимающими десятки, сотни и даже миллионы байт информации. Если мы использовали эту структуру, а затем необходимость в ней отпала, то в памяти остается дыра, совпадающая по размерам и расположению с местом, где лежали данные этой структуры. И удастся ли сию дыру использовать - еще бабушка надвое сказала. Иногда почти вся оперативная память состоит из дырок, не несущих никакой практической пользы, и места для записи даже небольшого объема данных не находится[Подобным особенно грешат операционные системы и среды разработки компании Microsoft: менеджер памяти, используемый в Windows, не столь эффективен, как его UNIX-собратья, и «мусора» в памяти оставляет гораздо больше. Иногда это приводит к тому, что нормально работающие на UNIX программы, использующие вдобавок сравнительно небольшой объем оперативной памяти, в MS Windows через некоторое время вылетают с ошибкой Out of memory].

В-третьих, существует такая интересная техника, как маппинг файлов на оперативную память. «Маппить» можно что угодно, причем это не только самый быстрый, но и один из самых удобных способов обработки файлов. Не нужно ничего читать из файла или записывать в него, не нужно думать об эффективном кэшировании данных - все происходит автоматически. Просто «мапнул» файл на память - и находившиеся в нем данные волшебным образом мгновенно оказались доступными приложению. В «настоящую» оперативную память они будут подгружаться только при обращении к ним, а в случае длительной «невостребованности» - вновь возвращаться на жесткий диск, освобождая место для чего-нибудь более актуального. Реализовать что-либо подобное «вручную» - практически невозможно. Но, к сожалению, на двух гигабайтах адресного пространства Windows особенно не развернешься[И на 4 Гбайт своп-файла, которыми нас обычно ограничивает Windows (ругать так ругать!), - зачастую тоже], поэтому техника маппинга задействуется только тогда, когда высокая скорость обработки файлов для приложения становится критичной.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Журнал «Компьютерра» №41 от 08 ноября 2005 года"

Книги похожие на "Журнал «Компьютерра» №41 от 08 ноября 2005 года" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Журнал Компьютерра

Журнал Компьютерра - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Журнал Компьютерра - Журнал «Компьютерра» №41 от 08 ноября 2005 года"

Отзывы читателей о книге "Журнал «Компьютерра» №41 от 08 ноября 2005 года", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.